Time-fractional discrete diffusion equation for Schrödinger operator

被引:2
作者
Dasgupta, Aparajita [1 ]
Mondal, Shyam Swarup [2 ]
Ruzhansky, Michael [3 ,4 ]
Tushir, Abhilash [1 ]
机构
[1] Indian Inst Technol, Dept Math, Delhi 110016, New Delhi, India
[2] Indian Inst Sci, Dept Math, Bengaluru 560012, Karnataka, India
[3] Univ Ghent, Dept Math Anal Logic & Discrete Math, Ghent, Belgium
[4] Queen Mary Univ London, Sch Math Sci, London, England
基金
英国工程与自然科学研究理事会;
关键词
Diffusion equation; Well-posedness; General Caputo fractional; Schr & ouml; dinger operator; Discrete lattice; BOUNDARY-VALUE-PROBLEMS; WEAK SOLUTIONS; WAVE-EQUATION; HEAT-EQUATION; COEFFICIENTS;
D O I
10.1007/s13540-024-00323-y
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
This article aims to investigate the semi-classical analog of the general Caputo-type diffusion equation with time-dependent diffusion coefficient associated with the discrete Schr & ouml;dinger operator, H & hstrok;,V:=-& hstrok;-2L & hstrok;+V\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathcal {H}_{\hbar ,V}:=-\hbar <^>{-2}\mathcal {L}_{\hbar }+V$$\end{document} on the lattice & hstrok;Zn,\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\hbar \mathbb {Z}<^>{n},$$\end{document} where V is a positive multiplication operator and L & hstrok;\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathcal {L}_{\hbar }$$\end{document} is the discrete Laplacian. We establish the well-posedness of the Cauchy problem for the general Caputo-type diffusion equation with a regular coefficient in the associated Sobolev-type spaces. However, it is very weakly well-posed when the diffusion coefficient has a distributional singularity. Finally, we recapture the classical solution (resp. very weak) for the general Caputo-type diffusion equation in the semi-classical limit & hstrok;-> 0\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\hbar \rightarrow 0$$\end{document}.
引用
收藏
页码:3208 / 3239
页数:32
相关论文
共 43 条
  • [1] [Anonymous], 2012, De Gruyter Studies in Mathematics, DOI [DOI 10.1515/9783110269338, 10.1515/9783110269338]
  • [2] Wave propagation with irregular dissipation and applications to acoustic problems and shallow waters
    Carlos Munoz, Juan
    Ruzhansky, Michael
    Tokmagambetov, Niyaz
    [J]. JOURNAL DE MATHEMATIQUES PURES ET APPLIQUEES, 2019, 123 : 127 - 147
  • [3] Carpinteri A., 1997, FRACTALS FRACTIONAL, DOI 10.1007/978-3-7091-2664-6
  • [4] Chatzakou M., 2023, P R SOC EDINB, DOI [10.1017/prm.2023.84, DOI 10.1017/PRM.2023.84]
  • [5] Parabolic Anderson model with a fractional Gaussian noise that is rough in time
    Chen, Xia
    [J]. ANNALES DE L INSTITUT HENRI POINCARE-PROBABILITES ET STATISTIQUES, 2020, 56 (02): : 792 - 825
  • [6] Dasgupta A., 2023, ARXIV, DOI DOI 10.48550/ARXIV.2306.02409
  • [7] Dasgupta A., 2022, ARXIV, DOI DOI 10.48550/ARXIV.2205.05360
  • [8] Discrete time-dependent wave equations I. Semiclassical analysis
    Dasgupta, Aparajita
    Ruzhansky, Michael
    Tushir, Abhilash
    [J]. JOURNAL OF DIFFERENTIAL EQUATIONS, 2022, 317 : 89 - 120
  • [9] WHY FRACTIONAL DERIVATIVES WITH NONSINGULAR KERNELS SHOULD NOT BE USED
    Diethelm, Kai
    Garrappa, Roberto
    Giusti, Andrea
    Stynes, Martin
    [J]. FRACTIONAL CALCULUS AND APPLIED ANALYSIS, 2020, 23 (03) : 610 - 634
  • [10] Time Fractional Parabolic Equations with Measurable Coefficients and Embeddings for Fractional Parabolic Sobolev Spaces
    Dong, Hongjie
    Kim, Doyoon
    [J]. INTERNATIONAL MATHEMATICS RESEARCH NOTICES, 2021, 2021 (22) : 17563 - 17610