INITIAL-BOUNDARY VALUE PROBLEM FOR TRANSPORT EQUATIONS DRIVEN BY ROUGH PATHS

被引:0
作者
Noboriguchi, Dai [1 ]
机构
[1] Waseda Univ, Sr High Sch, 3-31-1 Kamishakujii,Nerima Ku, Tokyo 1770044, Japan
关键词
Initial-boundary value problem; transport equation; rough paths; SCALAR CONSERVATION-LAWS; DIFFERENTIAL-EQUATIONS;
D O I
10.1090/tpms/1212
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
In this paper, we are interested in the initial Dirichlet boundary value problem for a transport equation driven by weak geometric Ho<spacing diaeresis>lder p -rough paths. We introduce a notion of solutions to rough partial differential equations with boundary conditions. Consequently, we will establish a well-posedness for such a solution under some assumptions stated below. Moreover, the solution is given explicitly.
引用
收藏
页码:167 / 183
页数:17
相关论文
共 23 条
[1]  
Amann H., 1990, ORDINARY DIFFERENTIA, V13, DOI [10.1515/9783110853698, DOI 10.1515/9783110853698]
[2]   Transport equation and Cauchy problem for BV vector fields [J].
Ambrosio, L .
INVENTIONES MATHEMATICAE, 2004, 158 (02) :227-260
[3]  
Arlotti L., ARXIV
[4]  
BARDOS C, 1970, ANN SCI ECOLE NORM S, V3, P185
[5]  
Boyer F, 2005, DIFFER INTEGRAL EQU, V18, P891
[6]   Partial differential equations driven by rough paths [J].
Caruana, Michael ;
Friz, Peter .
JOURNAL OF DIFFERENTIAL EQUATIONS, 2009, 247 (01) :140-173
[7]  
Crippa G., ARXIV
[8]   Scalar conservation laws with stochastic forcing [J].
Debussche, A. ;
Vovelle, J. .
JOURNAL OF FUNCTIONAL ANALYSIS, 2010, 259 (04) :1014-1042
[9]   ORDINARY DIFFERENTIAL-EQUATIONS, TRANSPORT-THEORY AND SOBOLEV SPACES [J].
DIPERNA, RJ ;
LIONS, PL .
INVENTIONES MATHEMATICAE, 1989, 98 (03) :511-547
[10]   Well-posedness of the transport equation by stochastic perturbation [J].
Flandoli, F. ;
Gubinelli, M. ;
Priola, E. .
INVENTIONES MATHEMATICAE, 2010, 180 (01) :1-53