Dynamic Behavior and Bifurcation Analysis of a Modified Reduced Lorenz Model

被引:0
作者
Al-Kaff, Mohammed O. [1 ,2 ]
Alnemer, Ghada [3 ]
El-Metwally, Hamdy A. [1 ]
Elsadany, Abd-Elalim A. [4 ,5 ]
Elabbasy, Elmetwally M. [1 ]
机构
[1] Mansoura Univ, Fac Sci, Dept Math, Mansoura 35516, Egypt
[2] Seiyun Univ, Coll Educ, Dept Math, Seiyun, Yemen
[3] Princess Nourah bint Abdulrahman Univ, Coll Sci, Dept Math Sci, Riyadh 11671, Saudi Arabia
[4] Prince Sattam bin Abdulaziz Univ, Coll Sci Humanities Studies Al Kharj, Math Dept, Al Kharj 11942, Saudi Arabia
[5] Suez Canal Univ, Fac Comp & Informat, Dept Basic Sci, Ismailia 41522, Egypt
关键词
Lorenz model; pitchfork bifurcation; period-doubling; Neimark-Sacker bifurcation; chaos; PREDATOR-PREY MODEL; CHAOTIC MAPS; COMPUTATIONAL CHAOS; PHASE;
D O I
10.3390/math12091354
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
This study introduces a newly modified Lorenz model capable of demonstrating bifurcation within a specified range of parameters. The model demonstrates various bifurcation behaviors, which are depicted as distinct structures in the diagram. The study aims to discover and analyze the existence and stability of fixed points in the model. To achieve this, the center manifold theorem and bifurcation theory are employed to identify the requirements for pitchfork bifurcation, period-doubling bifurcation, and Neimark-Sacker bifurcation. In addition to theoretical findings, numerical simulations, including bifurcation diagrams, phase pictures, and maximum Lyapunov exponents, showcase the nuanced, complex, and diverse dynamics. Finally, the study applies the Ott-Grebogi-Yorke (OGY) method to control the chaos observed in the reduced modified Lorenz model.
引用
收藏
页数:20
相关论文
共 29 条
  • [1] Dynamic Behaviors in a Discrete Model for Predator-Prey Interactions Involving Hibernating Vertebrates
    Al-Kaff, Mohammed O.
    El-Metwally, Hamdy A.
    Elabbasy, El-Metwally M.
    Elsadany, Abd-Elalim A.
    [J]. INTERNATIONAL JOURNAL OF BIFURCATION AND CHAOS, 2023, 33 (15):
  • [2] Qualitative analysis and phase of chaos control of the predator-prey model with Holling type-III
    AL-Kaff, Mohammed O.
    El-Metwally, Hamdy A.
    Elabbasy, El-Metwally M.
    [J]. SCIENTIFIC REPORTS, 2022, 12 (01)
  • [3] Color image encryption using random transforms, phase retrieval, chaotic maps, and diffusion
    Annaby, M. H.
    Rushdi, M. A.
    Nehary, E. A.
    [J]. OPTICS AND LASERS IN ENGINEERING, 2018, 103 : 9 - 23
  • [4] An Algorithm of Image Encryption Using Logistic and Two-Dimensional Chaotic Economic Maps
    Askar, Sameh S.
    Karawia, Abdel A.
    Al-Khedhairi, Abdulrahman
    Al-Ammar, Fatemah S.
    [J]. ENTROPY, 2019, 21 (01)
  • [5] Carr J., 2012, Applications of centre manifold theoryM
  • [6] Bifurcation analysis and chaos in a discrete reduced Lorenz system
    Elabbasy, E. M.
    Elsadany, A. A.
    Zhang, Yue
    [J]. APPLIED MATHEMATICS AND COMPUTATION, 2014, 228 : 184 - 194
  • [7] Stability and Bifurcation Analysis of a Discrete Predator-Prey Model with Mixed Holling Interaction
    Elettreby, M. F.
    Nabil, Tamer
    Khawagi, A.
    [J]. CMES-COMPUTER MODELING IN ENGINEERING & SCIENCES, 2020, 122 (03): : 907 - 921
  • [8] Further analytical bifurcation analysis and applications of coupled logistic maps
    Elsadany, A. A.
    Yousef, A. M.
    Elsonbaty, Amr
    [J]. APPLIED MATHEMATICS AND COMPUTATION, 2018, 338 : 314 - 336
  • [9] A route to computational chaos revisited: noninvertibility and the breakup of an invariant circle
    Frouzakis, CE
    Kevrekidis, IG
    Peckham, BB
    [J]. PHYSICA D-NONLINEAR PHENOMENA, 2003, 177 (1-4) : 101 - 121
  • [10] 2-DIMENSIONAL MAPPING WITH A STRANGE ATTRACTOR
    HENON, M
    [J]. COMMUNICATIONS IN MATHEMATICAL PHYSICS, 1976, 50 (01) : 69 - 77