Two-stage Adaptive Compressive Sensing and Reconstruction for Terahertz Single-Pixel Imaging

被引:1
作者
Zhang, Yu-Kai [1 ]
Chou, Che-Yu [2 ]
Yang, Shang-Hua [1 ,3 ]
Huang, Yuan-Hao [1 ,2 ]
机构
[1] Natl Tsing Hua Univ, Dept Elect Engn, Hsinchu, Taiwan
[2] Natl Tsing Hua Univ, Inst Commun Engn, Hsinchu, Taiwan
[3] Natl Tsing Hua Univ, Inst Elect Engn, Hsinchu, Taiwan
来源
2024 IEEE INTERNATIONAL SYMPOSIUM ON CIRCUITS AND SYSTEMS, ISCAS 2024 | 2024年
关键词
D O I
10.1109/ISCAS58744.2024.10558158
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
Terahertz (THz) single-pixel imaging system based on compressive sensing (CS) technique is recently studied widely because it can significantly reduce the cost of THz sensor and processing latency. This paper proposes a two-stage adaptive CS and reconstruction algorithm for single-pixel THz imaging systems. The proposed algorithm incorporates the object profile information, which is acquired from the first-stage sensing and reconstruction, in the mask patterns of the second-stage sensing and reconstruction, thereby improving the image quality with smaller measurement number and reduced computational complexity. Simulation results show that, when the target mean square error is set to be 0.08, the proposed two-stage CS and reconstruction algorithm can reduce 43.9% measurements and 36% complexity for 64 x 64 images compared with the traditional one-stage single-pixel CS imaging system.
引用
收藏
页数:5
相关论文
共 12 条
[1]   IEEE-SPS and connexions - An open access education collaboration [J].
Baraniuk, Richard G. ;
Burrus, C. Sidney ;
Thierstein, E. Joel .
IEEE SIGNAL PROCESSING MAGAZINE, 2007, 24 (06) :6-+
[2]   Single-pixel imaging via compressive sampling [J].
Duarte, Marco F. ;
Davenport, Mark A. ;
Takhar, Dharmpal ;
Laska, Jason N. ;
Sun, Ting ;
Kelly, Kevin F. ;
Baraniuk, Richard G. .
IEEE SIGNAL PROCESSING MAGAZINE, 2008, 25 (02) :83-91
[3]   THz imaging and sensing for security applications - explosives, weapons and drugs [J].
Federici, JF ;
Schulkin, B ;
Huang, F ;
Gary, D ;
Barat, R ;
Oliveira, F ;
Zimdars, D .
SEMICONDUCTOR SCIENCE AND TECHNOLOGY, 2005, 20 (07) :S266-S280
[4]  
Kawase K, 2004, OPT PHOTONICS NEWS, V15, P34, DOI 10.1364/OPN.15.10.000034
[5]   FPGA Implementation of an Improved OMP for Compressive Sensing Reconstruction [J].
Li, Jun ;
Chow, Paul ;
Peng, Yuanxi ;
Jiang, Tian .
IEEE TRANSACTIONS ON VERY LARGE SCALE INTEGRATION (VLSI) SYSTEMS, 2021, 29 (02) :259-272
[6]  
Stantchev R. I., 2020, NATURE COMMUNICATION, V11, P1
[7]   Noninvasive, near-field terahertz imaging of hidden objects using a single-pixel detector [J].
Stantchev, Rayko Ivanov ;
Sun, Baoqing ;
Hornett, Sam M. ;
Hobson, Peter A. ;
Gibson, Graham M. ;
Padgett, Miles J. ;
Hendry, Euan .
SCIENCE ADVANCES, 2016, 2 (06)
[8]   FPGA Implementation of Sparsity Independent Regularized Pursuit for Fast CS Reconstruction [J].
Thomas, Thomas James ;
Rani, J. Sheeba .
IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS I-REGULAR PAPERS, 2022, 69 (04) :1617-1628
[9]   FPGA-Based Tensor Compressive Sensing Reconstruction Processor for Terahertz Single-Pixel Imaging Systems [J].
Wang, Wei-Chieh ;
Hung, Yi-Chun ;
Du, Yu-Heng ;
Yang, Shang-Hua ;
Huang, Yuan-Hao .
IEEE OPEN JOURNAL OF CIRCUITS AND SYSTEMS, 2022, 3 :336-350
[10]   Tensor-Based Terahertz Compressive Sensing Imaging [J].
Wang, Wei-Chieh ;
Wang, Jou-Chen ;
Hung, Yi-Chun ;
Yang, Shang-Hua ;
Huang, Yuan-Hao .
2021 46TH INTERNATIONAL CONFERENCE ON INFRARED, MILLIMETER AND TERAHERTZ WAVES (IRMMW-THZ), 2021,