Metal Artifact Reduction in CT Using Unsupervised Sinogram Manifold Learning

被引:0
作者
Peng, Junbo [1 ,2 ]
Chang, Chih-Wei [1 ,2 ]
Xie, Huiqiao [3 ]
Fan, Mingdong [1 ,2 ]
Wang, Tonghe [3 ]
Roper, Justin [1 ,2 ]
Qiu, Richard L. J. [1 ,2 ]
Tang, Xiangyang [4 ]
Yang, Xiaofeng [1 ,2 ]
机构
[1] Emory Univ, Dept Radiat Oncol, Atlanta, GA 30322 USA
[2] Emory Univ, Winship Canc Inst, Atlanta, GA 30322 USA
[3] Mem Sloan Kettering Canc Ctr, Dept Med Phys, New York, NY 10068 USA
[4] Emory Univ, Dept Radiol & Imaging Sci, Atlanta, GA 30322 USA
来源
MEDICAL IMAGING 2024: PHYSICS OF MEDICAL IMAGING, PT 1 | 2024年 / 12925卷
关键词
RECONSTRUCTION;
D O I
10.1117/12.3006947
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Computed tomography (CT) imaging is widely used for medical diagnosis and image guidance for treatment. Metal artifacts are observed on the reconstructed CT images if metal implants are carried by patients due to the beam hardening effects. In this condition, the acquired projection data cannot be used for analytical reconstruction as they do not meet Tuy's data sufficiency condition. Numerous deep learning-based methods have been developed for metal artifact reduction (MAR), providing superior performance. Nevertheless, all the reported models are data-driven and require large-size referenced images for the manifold approximation. In this work, we propose a physics-driven sinogram manifold learning method, which fully exploits the projection data correlation in CT scanning for MAR, and the proposed method is ready to be extended to other data-incomplete CT reconstruction problems.
引用
收藏
页数:6
相关论文
共 14 条
[1]   High-resolution MRI synthesis using a data-driven framework with denoising diffusion probabilistic modeling [J].
Chang, Chih-Wei ;
Peng, Junbo ;
Safari, Mojtaba ;
Salari, Elahheh ;
Pan, Shaoyan ;
Roper, Justin ;
Qiu, Richard L. J. ;
Gao, Yuan ;
Shu, Hui-Kuo ;
Mao, Hui ;
Yang, Xiaofeng .
PHYSICS IN MEDICINE AND BIOLOGY, 2024, 69 (04)
[2]   A limited-angle CT reconstruction method based on anisotropic TV minimization [J].
Chen, Zhiqiang ;
Jin, Xin ;
Li, Liang ;
Wang, Ge .
PHYSICS IN MEDICINE AND BIOLOGY, 2013, 58 (07) :2119-2141
[3]   Deep learning-based synthetic dose-weighted LET map generation for intensity modulated proton therapy [J].
Gao, Yuan ;
Chang, Chih-Wei ;
Pan, Shaoyan ;
Peng, Junbo ;
Ma, Chaoqiong ;
Patel, Pretesh ;
Roper, Justin ;
Zhou, Jun ;
Yang, Xiaofeng .
PHYSICS IN MEDICINE AND BIOLOGY, 2024, 69 (02)
[4]   A novel reconstruction algorithm to extend the CT scan field-of-view [J].
Hsieh, J ;
Chao, E ;
Thibault, J ;
Grekowicz, B ;
Horst, A ;
McOlash, S ;
Myers, TJ .
MEDICAL PHYSICS, 2004, 31 (09) :2385-2391
[5]   REDUCTION OF CT ARTIFACTS CAUSED BY METALLIC IMPLANTS [J].
KALENDER, WA ;
HEBEL, R ;
EBERSBERGER, J .
RADIOLOGY, 1987, 164 (02) :576-577
[6]   Image reconstruction for sparse-view CT and interior CT-introduction to compressed sensing and differentiated backprojection [J].
Kudo, Hiroyuki ;
Suzuki, Taizo ;
Rashed, Essam A. .
QUANTITATIVE IMAGING IN MEDICINE AND SURGERY, 2013, 3 (03) :147-161
[7]  
Natterer F., 2001, The Mathematics of Computerized Tomography
[8]  
Pan SY, 2024, Arxiv, DOI arXiv:2308.13072
[9]  
Pan SY, 2023, Arxiv, DOI arXiv:2305.00042
[10]  
Pan SY, 2023, Arxiv, DOI [arXiv:2305.19467, DOI 10.48550/ARXIV.2305.19467, 10.48550/arXiv.2305.19467]