Explainable machine learning for unraveling solvent effects in polyimide organic solvent nanofiltration membranes

被引:35
|
作者
Ignacz, Gergo [1 ]
Alqadhi, Nawader [1 ]
Szekely, Gyorgy [1 ]
机构
[1] King Abdullah Univ Sci & Technol KAUST, Adv Membranes & Porous Mat Ctr, Phys Sci & Engn Div PSE, Thuwal 239556900, Saudi Arabia
来源
ADVANCED MEMBRANES | 2023年 / 3卷
关键词
Solute rejection; Nanofiltration; Organic solvent; Big data; Explainable AI; TRANSPORT; OPTIMIZATION; MODEL;
D O I
10.1016/j.advmem.2023.100061
中图分类号
TQ [化学工业];
学科分类号
0817 ;
摘要
Understanding the effects of solvents on organic solvent nanofiltration currently depends on results obtained from small datasets, which slows down the industrial implementation of this technology. We present an in-depth study to identify and unify the effects of solvent parameters on solute rejection. For this purpose, we measured the rejection of 407 solutes in 11 common and green solvents using a polyimide membrane in a medium-throughput cross-flow nanofiltration system. Based on the large dataset, we experimentally verify that permeance and electronic effects of the solvent structure (Hildebrand parameters, electrotopological descriptors, and LogP) have strong impact on the average solute rejection. We furthermore identify the most important solvent parameters affecting solute rejection. Our dataset was used to build and test a graph neural network to predict the rejection of solutes. The results were rigorously tested against both internal and literature data, and demonstrated good generalization and robustness. Our model showed 0.124 (86.4% R2) and 0.123 (71.4 R2) root mean squared error for the internal and literature test sets, respectively. Explainable artificial intelligence helps understand and visualize the underlying effects of atoms and functional groups altering the rejection.
引用
收藏
页数:12
相关论文
共 50 条
  • [1] Solvent transport in organic solvent nanofiltration membranes
    Silva, P
    Han, SJ
    Livingston, AG
    JOURNAL OF MEMBRANE SCIENCE, 2005, 262 (1-2) : 49 - 59
  • [2] New membranes for organic solvent nanofiltration
    Dutczak, S.
    Luiten-Olieman, M.
    Zwijnenberg, H. J.
    Tanardi, C. R.
    Kopec, K. K.
    Bolhuis-Versteeg, L. A. M.
    EUROMEMBRANE CONFERENCE 2012, 2012, 44 : 247 - 250
  • [3] Cellulose membranes for organic solvent nanofiltration
    Sukma, F. M.
    Culfaz-Emecen, P. Z.
    JOURNAL OF MEMBRANE SCIENCE, 2018, 545 : 329 - 336
  • [4] Nanocomposite membranes for organic solvent nanofiltration
    Davood Abadi Farahani, Mohammad Hossein
    Ma, Dangchen
    Nazemizadeh Ardakani, Pegah
    SEPARATION AND PURIFICATION REVIEWS, 2020, 49 (03): : 177 - 206
  • [5] High solvent-resistant and integrally crosslinked polyimide-based composite membranes for organic solvent nanofiltration
    Li, Can
    Li, Shuxuan
    Lv, Li
    Su, Baowei
    Hu, Michael Z.
    JOURNAL OF MEMBRANE SCIENCE, 2018, 564 : 10 - 21
  • [6] Machine learning based prediction and optimization of thin film nanocomposite membranes for organic solvent nanofiltration
    Wang, Chen
    Wang, Li
    Soo, Allan
    Pathak, Nirenkumar Bansidhar
    Shon, Ho Kyong
    SEPARATION AND PURIFICATION TECHNOLOGY, 2023, 304
  • [7] Machine learning based prediction and optimization of thin film nanocomposite membranes for organic solvent nanofiltration
    Wang, Chen
    Wang, Li
    Soo, Allan
    Pathak, Nirenkumar Bansidhar
    Shon, Ho Kyong
    SEPARATION AND PURIFICATION TECHNOLOGY, 2023, 304
  • [8] Beyond polyimide: Crosslinked polybenzimidazole membranes for organic solvent nanofiltration (OSN) in harsh environments
    Valtcheva, Irina B.
    Kumbharkar, Santosh C.
    Kim, Jeong F.
    Bhole, Yogesh
    Livingston, Andrew G.
    JOURNAL OF MEMBRANE SCIENCE, 2014, 457 : 62 - 72
  • [9] Controllable thermal annealing of polyimide membranes for highly-precise organic solvent nanofiltration
    Feng, Weilin
    Li, Jiaqi
    Fang, Chuanjie
    Zhang, Lin
    Zhu, Liping
    JOURNAL OF MEMBRANE SCIENCE, 2022, 643
  • [10] Sustainable Fabrication of Organic Solvent Nanofiltration Membranes
    Hai Yen Nguyen Thi
    Bao Tran Duy Nguyen
    Kim, Jeong F.
    MEMBRANES, 2021, 11 (01) : 1 - 21