An anisotropic hp-adaptation framework for ultraweak discontinuous Petrov-Galerkin formulations

被引:1
作者
Chakraborty, Ankit [1 ]
Henneking, Stefan [1 ]
Demkowicz, Leszek [1 ]
机构
[1] Univ Texas Austin, Oden Inst, Austin, TX 78712 USA
基金
美国国家科学基金会;
关键词
DPG; Anisotropy; hp-adaptivity; FINITE-ELEMENT-METHOD; ROBUST DPG METHOD; P-VERSION; ADAPTIVITY; STRATEGY; ERROR; APPROXIMATIONS; SPACES;
D O I
10.1016/j.camwa.2024.05.025
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this article, we present a three-dimensional anisotropic hp-mesh refinement strategy for ultraweak discontinuous Petrov-Galerkin (DPG) formulations with optimal test functions. The refinement strategy utilizes the built-in residual-based error estimator accompanying the DPG discretization. The refinement strategy is a two-step process: (a) use the built-in error estimator to mark and isotropically hp-refine elements of the (coarse) mesh to generate a finer mesh; (b) use the reference solution on the finer mesh to compute optimal h- and p-refinements of the selected elements in the coarse mesh. The process is repeated with coarse and fine mesh being generated in every adaptation cycle, until a prescribed error tolerance is achieved. We demonstrate the performance of the proposed refinement strategy using several numerical examples on hexahedral meshes.
引用
收藏
页码:315 / 327
页数:13
相关论文
共 48 条
[1]  
[Anonymous], 1998, Theory and applications in solid and fluid mechanics
[2]   High-order polygonal discontinuous Petrov-Galerkin (PolyDPG) methods using ultraweak formulations [J].
Astaneh, Ali Vaziri ;
Fuentes, Federico ;
Mora, Jaime ;
Demkowicz, Leszek .
COMPUTER METHODS IN APPLIED MECHANICS AND ENGINEERING, 2018, 332 :686-711
[3]   hp optimization of finite element approximations: Analysis of the optimal mesh sequences in one dimension [J].
Babuska, I ;
Strouboulis, T ;
Copps, K .
COMPUTER METHODS IN APPLIED MECHANICS AND ENGINEERING, 1997, 150 (1-4) :89-108
[4]   ERROR-BOUNDS FOR FINITE ELEMENT METHOD [J].
BABUSKA, I .
NUMERISCHE MATHEMATIK, 1971, 16 (04) :322-&
[5]   THE H, P AND H-P VERSION OF THE FINITE-ELEMENT METHOD - BASIS THEORY AND APPLICATIONS [J].
BABUSKA, I ;
GUO, BQ .
ADVANCES IN ENGINEERING SOFTWARE, 1992, 15 (3-4) :159-174
[6]   Scalable DPG multigrid solver for Helmholtz problems: A study on convergence [J].
Badger, Jacob ;
Henneking, Stefan ;
Petrides, Socratis ;
Demkowicz, Leszek .
COMPUTERS & MATHEMATICS WITH APPLICATIONS, 2023, 148 :81-92
[7]   Breaking spaces and forms for the DPG method and applications including Maxwell equations [J].
Carstensen, C. ;
Demkowicz, L. ;
Gopalakrishnan, J. .
COMPUTERS & MATHEMATICS WITH APPLICATIONS, 2016, 72 (03) :494-522
[8]  
Chakraborty A., 2022, Ph.D. thesis
[9]   A robust DPG method for convection-dominated diffusion problems II: Adjoint boundary conditions and mesh-dependent test norms [J].
Chan, Jesse ;
Heuer, Norbert ;
Tan Bui-Thanh ;
Demkowicz, Leszek .
COMPUTERS & MATHEMATICS WITH APPLICATIONS, 2014, 67 (04) :771-795
[10]   ADAPTIVITY AND VARIATIONAL STABILIZATION FOR CONVECTION-DIFFUSION EQUATIONS [J].
Cohen, Albert ;
Dahmen, Wolfgang ;
Welper, Gerrit .
ESAIM-MATHEMATICAL MODELLING AND NUMERICAL ANALYSIS-MODELISATION MATHEMATIQUE ET ANALYSE NUMERIQUE, 2012, 46 (05) :1247-1273