An rp-weighted local energy approach to global existence for null form semilinear wave equations

被引:0
作者
Facci, Michael [1 ]
McEntarrfer, Alex [1 ]
Metcalfe, Jason [1 ]
机构
[1] Univ N Carolina, Dept Math, Chapel Hill, NC 27515 USA
来源
INVOLVE, A JOURNAL OF MATHEMATICS | 2024年 / 17卷 / 01期
基金
美国国家科学基金会;
关键词
semilinear wave equations; null condition; global existence; local energy estimate; EXTERIOR; DECAY;
D O I
10.2140/involve.2024.17.1
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We revisit the proof of small -data global existence for semilinear wave equations that satisfy a null condition. This new approach relies on a weighted local energy estimate that is akin to those of Dafermos and Rodnianski. Using weighted Sobolev estimates to obtain spatial decay and arguing in the spirit of the work of Keel, Smith, and Sogge, we are able to obtain global existence while only relying on translational and (spatial) rotational symmetries.
引用
收藏
页码:1 / 9
页数:14
相关论文
共 24 条
[1]   The null condition for quasilinear wave equations in two space dimensions I [J].
Alinhac, S .
INVENTIONES MATHEMATICAE, 2001, 145 (03) :597-618
[2]   GLOBAL-SOLUTIONS OF NONLINEAR HYPERBOLIC-EQUATIONS FOR SMALL INITIAL DATA [J].
CHRISTODOULOU, D .
COMMUNICATIONS ON PURE AND APPLIED MATHEMATICS, 1986, 39 (02) :267-282
[3]   A NEW PHYSICAL-SPACE APPROACH TO DECAY FOR THE WAVE EQUATION WITH APPLICATIONS TO BLACK HOLE SPACETIMES [J].
Dafermos, Mihalis ;
Rodnianski, Igor .
XVITH INTERNATIONAL CONGRESS ON MATHEMATICAL PHYSICS, 2010, :421-+
[4]   An alternative proof of global existence for nonlinear wave equations in an exterior domain [J].
Katayama, Soichiro ;
Kubo, Hideo .
JOURNAL OF THE MATHEMATICAL SOCIETY OF JAPAN, 2008, 60 (04) :1135-1170
[5]   Almost global existence for some semilinear wave equations [J].
Keel, M ;
Smith, HF ;
Sogge, CD .
JOURNAL D ANALYSE MATHEMATIQUE, 2002, 87 (1) :265-279
[6]  
Keir J, 2018, Arxiv, DOI arXiv:1808.09982
[7]  
Klainerman S, 1996, COMMUN PUR APPL MATH, V49, P307, DOI 10.1002/(SICI)1097-0312(199603)49:3<307::AID-CPA4>3.0.CO
[8]  
2-H
[10]  
Klainerman S., 1986, LECT APPL MATH, V23, P293