Rearrangement-invariant hulls of weighted Lebesgue spaces

被引:0
作者
Krepela, Martin [1 ]
Mihula, Zdenek [1 ]
Soria, Javier [2 ]
机构
[1] Czech Tech Univ, Fac Elect Engn, Dept Math, Technicka 2, Prague 6, Czech Republic
[2] Univ Complutense Madrid, Interdisciplinary Math Inst IMI, Dept Anal & Appl Math, Madrid 28040, Spain
关键词
Weighted inequalities; Rearrangement-invariant hull; Lorentz spaces; OPERATORS;
D O I
10.1016/j.jfa.2024.110454
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We characterize the rearrangement -invariant hull, with respect to a given measure mu , of weighted Lebesgue spaces. The solution leads us to first consider when this space is contained in the sum of ( L 1 + L infinity )( R, mu ) and the final condition is given in terms of embeddings for weighted Lorentz spaces. (c) 2024 Elsevier Inc. All rights reserved.
引用
收藏
页数:20
相关论文
共 14 条
[1]   MAXIMAL FUNCTIONS ON CLASSICAL LORENTZ SPACES AND HARDY INEQUALITY WITH WEIGHTS FOR NONINCREASING FUNCTIONS [J].
ARINO, MA ;
MUCKENHOUPT, B .
TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 1990, 320 (02) :727-735
[2]  
Baernstein A.II, 2019, NEW MATH MONOGRAPHS, V36
[3]  
Bennett C., 1988, PURE APPL MATH, V129
[4]   ON A FAMILY OF FULLY NONLINEAR INTEGRODIFFERENTIAL OPERATORS: FROM FRACTIONAL LAPLACIAN TO NONLOCAL MONGE-AMPÈRE [J].
Caffarelli, Luis A. ;
Soria-Carro, Maria .
ANALYSIS & PDE, 2024, 17 (01) :243-279
[5]  
Carro MJ, 2007, MEM AM MATH SOC, V187, pIX
[6]   Higher-order Sobolev embeddings and isoperimetric inequalities [J].
Cianchi, Andrea ;
Pick, Lubos ;
Slavikova, Lenka .
ADVANCES IN MATHEMATICS, 2015, 273 :568-650
[7]   Optimal Sobolev imbeddings involving rearrangement-invariant quasinorms [J].
Edmunds, DE ;
Kerman, R ;
Pick, L .
JOURNAL OF FUNCTIONAL ANALYSIS, 2000, 170 (02) :307-355
[8]  
Grey W.R., 2015, PhD thesis
[9]  
Haroske DD, 2007, CH CRC RES NOTES MAT, V437, P3
[10]  
Kabaila V.P., 1981, Lith. Math. J., V21, P342, DOI [DOI 10.1007/BF00969854, 10.1007/BF00969854]