Three-Dimensional Cell Culture of Adipose-Derived Stem Cells in a Hydrogel with Photobiomodulation Augmentation

被引:3
作者
Roets, Brendon [1 ]
Abrahamse, Heidi [1 ]
Crous, Anine [1 ]
机构
[1] Univ Johannesburg, Fac Hlth Sci, Laser Res Ctr, Johannesburg, South Africa
来源
JOVE-JOURNAL OF VISUALIZED EXPERIMENTS | 2024年 / 206期
基金
新加坡国家研究基金会;
关键词
EXTRACELLULAR-MATRIX; TISSUE; REGENERATION; SPHEROIDS; DELIVERY;
D O I
10.3791/66616
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Adipose-derived stem cells (ADSCs), possessing multipotent mesenchymal characteristics akin to stem cells, are frequently employed in regenerative medicine due to their capacity for a diverse range of cell differentiation and their ability to enhance migration, proliferation, and mitigate inflammation. However, ADSCs often face challenges in survival and engraftment within wounds, primarily due to unfavorable inflammatory conditions. To address this issue, hydrogels have been developed to sustain ADSC viability in wounds and expedite the wound healing process. Here, we aimed to assess the synergistic impact of photobiomodulation (PBM) on ADSC proliferation and cytotoxicity within a 3D cell culture framework. Immortalized ADSCs were seeded into 10 mu L hydrogels at a density of 2.5 x 103 cells and subjected to irradiation using 525 nm and 825 nm diodes at fluencies of 5 J/cm2 and 10 J/cm2. Morphological changes, cytotoxicity, and proliferation were evaluated at 24 h and 10 days post-PBM exposure. The ADSCs exhibited a rounded morphology and were dispersed throughout the gel as individual cells or spheroid aggregates. Importantly, both PBM and 3D culture framework displayed no cytotoxic effects on the cells, while PBM significantly enhanced the proliferation rates of ADSCs. In conclusion, this study demonstrates the use of hydrogel as a suitable 3D environment for ADSC culture and introduces PBM as a significant augmentation strategy, particularly addressing the slow proliferation rates associated with 3D cell culture.
引用
收藏
页数:16
相关论文
empty
未找到相关数据