Integrated spin-wave quantum memory

被引:0
|
作者
Zhu, Tian-Xiang [1 ,2 ]
Su, Ming-Xu [1 ,2 ]
Liu, Chao [1 ,2 ]
Liu, Yu-Ping [1 ,2 ,3 ]
Wang, Chao-Fan [1 ,2 ]
Liu, Pei-Xi [1 ,2 ]
Han, Yong-Jian [1 ,2 ,3 ]
Zhou, Zong-Quan [1 ,2 ,3 ]
Li, Chuan-Feng [1 ,2 ,3 ]
Guo, Guang-Can [1 ,2 ,3 ]
机构
[1] Univ Sci & Technol China, CAS Key Lab Quantum Informat, Hefei 230026, Peoples R China
[2] Univ Sci & Technol China, CAS Ctr Excellence Quantum Informat & Quantum Phy, Hefei 230026, Peoples R China
[3] Univ Sci & Technol China, Hefei Natl Lab, Hefei 230026, Peoples R China
关键词
quantum memory; integrated optics; quantum network; quantum optics; HERALDED ENTANGLEMENT;
D O I
10.1093/nsr/nwae161
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Photonic integrated quantum memories are essential for the construction of scalable quantum networks. Spin-wave quantum storage, which can support on-demand retrieval with a long lifetime, is indispensable for practical applications, but has never been demonstrated in an integrated solid-state device. Here, we demonstrate spin-wave quantum storage based on a laser-written waveguide fabricated in a 151Eu3+:Y2SiO5 crystal, using both the atomic frequency comb and noiseless photon-echo protocols. Qubits encoded with single-photon-level inputs are stored and retrieved with a fidelity of ${94.9\%\pm 1.2\%}$, which is far beyond the maximal fidelity that can be obtained with any classical device. Our results underline the potential of laser-written integrated devices for practical applications in large-scale quantum networks, such as the construction of multiplexed quantum repeaters in an integrated configuration and high-density transportable quantum memories. Single-photon-level light is stored as a spin-wave excitation in a laser-written waveguide, unlocking its practical applications in quantum repeaters and transportable quantum memories.
引用
收藏
页数:7
相关论文
共 50 条
  • [1] Integrated spin-wave quantum memory
    TianXiang Zhu
    MingXu Su
    Chao Liu
    YuPing Liu
    ChaoFan Wang
    PeiXi Liu
    YongJian Han
    ZongQuan Zhou
    ChuanFeng Li
    GuangCan Guo
    National Science Review, 2024, 11 (11) : 54 - 60
  • [2] Quantum-memory-based spin-wave processor for light
    Parniak, Michal
    Mazelanik, Mateusz
    Leszczynski, Adam
    Lipka, Michal
    Dabrowski, Michal
    Wasilewski, Wojciech
    ADVANCED OPTICAL TECHNIQUES FOR QUANTUM INFORMATION, SENSING, AND METROLOGY, 2020, 11295
  • [3] Spin-wave memory upgrade
    Oliver Graydon
    Nature Photonics, 2014, 8 (10) : 747 - 747
  • [4] Spin-wave wave function for quantum spin models
    Franjic, F
    Sorella, S
    PROGRESS OF THEORETICAL PHYSICS, 1997, 97 (03): : 399 - 406
  • [5] Spatial spin-wave modulator in multimode cold rubidium quantum memory
    Leszczynski, Adam
    Lipka, Michal
    Mazelanik, Mateusz
    Parniak, Michal
    Dabrowski, Michal
    Wasilewski, Wojciech
    2019 CONFERENCE ON LASERS AND ELECTRO-OPTICS EUROPE & EUROPEAN QUANTUM ELECTRONICS CONFERENCE (CLEO/EUROPE-EQEC), 2019,
  • [6] Spin-wave excitations in quantum dots
    Lipparini, E
    Serra, L
    PHYSICAL REVIEW B, 1998, 57 (12): : R6830 - R6833
  • [7] Spin-wave utilization in a quantum computer
    Khitun, A
    Ostroumov, R
    Wang, KL
    PHYSICAL REVIEW A, 2001, 64 (06): : 5
  • [8] A QUANTUM THEORY OF SPIN-WAVE RESONANCE
    PUSZKARSKI, H
    PHYSICS LETTERS A, 1969, A 30 (04) : 227 - +
  • [9] Spin-wave interactions in quantum antiferromagnets
    Hasselmann, N.
    Kopietz, P.
    EUROPHYSICS LETTERS, 2006, 74 (06): : 1067 - 1073
  • [10] A faithful solid-state spin-wave quantum memory for polarization qubits
    Jin, Ming
    Ma, You-Zhi
    Zhou, Zong-Quan
    Li, Chuan-Feng
    Guo, Guang-Can
    SCIENCE BULLETIN, 2022, 67 (07) : 676 - 678