WELL-POSEDNESS OF THE CO-ROTATIONAL BERIS-EDWARDS SYSTEM WITH THE LANDAU-DE GENNES ENERGY IN L 3 uloc ( R 3 )
被引:0
作者:
Liu, Qiao
论文数: 0引用数: 0
h-index: 0
机构:
Cent South Univ, Sch Math & Stat, HNP LAMA, Changsha 410083, Hunan, Peoples R ChinaCent South Univ, Sch Math & Stat, HNP LAMA, Changsha 410083, Hunan, Peoples R China
Liu, Qiao
[1
]
Zhao, Jihong
论文数: 0引用数: 0
h-index: 0
机构:
Baoji Univ Arts & Sci, Sch Math & Informat Sci, Baoji 721013, Shaanxi, Peoples R ChinaCent South Univ, Sch Math & Stat, HNP LAMA, Changsha 410083, Hunan, Peoples R China
Zhao, Jihong
[2
]
机构:
[1] Cent South Univ, Sch Math & Stat, HNP LAMA, Changsha 410083, Hunan, Peoples R China
[2] Baoji Univ Arts & Sci, Sch Math & Informat Sci, Baoji 721013, Shaanxi, Peoples R China
We investigate the well-posedness of the 3d co-rotational BerisEdwards system for incompressible nematic liquid crystal flows with the LandauDe Gennes bulk potential. The system under consideration consists of the Navier-Stokes equations for the fluid velocity u, and an evolution equation for the Q-tensor order parameter. We prove the existence of solutions to the Cauchy problem of the system with initial data (u0, Q0) having small L3uloc(R3)-norm of (u0, del Q0). Moreover, the uniqueness of L3uloc-solutions is obtained.