WELL-POSEDNESS OF THE CO-ROTATIONAL BERIS-EDWARDS SYSTEM WITH THE LANDAU-DE GENNES ENERGY IN L 3 uloc ( R 3 )

被引:0
作者
Liu, Qiao [1 ]
Zhao, Jihong [2 ]
机构
[1] Cent South Univ, Sch Math & Stat, HNP LAMA, Changsha 410083, Hunan, Peoples R China
[2] Baoji Univ Arts & Sci, Sch Math & Informat Sci, Baoji 721013, Shaanxi, Peoples R China
基金
中国国家自然科学基金;
关键词
Co-rotational Beris-Edwards system; Landau-De Gennes potential; well-posedness; uniqueness; NEMATIC LIQUID-CRYSTALS; Q-TENSOR SYSTEM; NAVIER-STOKES; WEAK SOLUTIONS; GLOBAL EXISTENCE; REGULARITY; UNIQUENESS; MODEL; FLOWS;
D O I
10.3934/dcds.2024081
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We investigate the well-posedness of the 3d co-rotational BerisEdwards system for incompressible nematic liquid crystal flows with the LandauDe Gennes bulk potential. The system under consideration consists of the Navier-Stokes equations for the fluid velocity u, and an evolution equation for the Q-tensor order parameter. We prove the existence of solutions to the Cauchy problem of the system with initial data (u0, Q0) having small L3uloc(R3)-norm of (u0, del Q0). Moreover, the uniqueness of L3uloc-solutions is obtained.
引用
收藏
页码:3878 / 3919
页数:42
相关论文
共 36 条
  • [1] Abels H, 2016, ADV DIFFERENTIAL EQU, V21, P109
  • [2] WELL-POSEDNESS OF A FULLY COUPLED NAVIER-STOKES/Q-TENSOR SYSTEM WITH INHOMOGENEOUS BOUNDARY DATA
    Abels, Helmut
    Dolzmann, Georg
    Liu, Yuning
    [J]. SIAM JOURNAL ON MATHEMATICAL ANALYSIS, 2014, 46 (04) : 3050 - 3077
  • [3] Mathematics and liquid crystals
    Ball, J. M.
    [J]. MOLECULAR CRYSTALS AND LIQUID CRYSTALS, 2017, 647 (01) : 1 - 27
  • [4] Orientability and Energy Minimization in Liquid Crystal Models
    Ball, John M.
    Zarnescu, Arghir
    [J]. ARCHIVE FOR RATIONAL MECHANICS AND ANALYSIS, 2011, 202 (02) : 493 - 535
  • [5] Nematic Liquid Crystals: From Maier-Saupe to a Continuum Theory
    Ball, John M.
    Majumdar, Apala
    [J]. MOLECULAR CRYSTALS AND LIQUID CRYSTALS, 2010, 525 : 1 - 11
  • [6] Beris A. N., 1994, THERMODYNAMICS FLOWI
  • [7] PARTIAL REGULARITY OF SUITABLE WEAK SOLUTIONS OF THE NAVIER-STOKES EQUATIONS
    CAFFARELLI, L
    KOHN, R
    NIRENBERG, L
    [J]. COMMUNICATIONS ON PURE AND APPLIED MATHEMATICS, 1982, 35 (06) : 771 - 831
  • [8] GLOBAL STRONG SOLUTIONS OF THE FULL NAVIER-STOKES AND Q-TENSOR SYSTEM FOR NEMATIC LIQUID CRYSTAL FLOWS IN TWO DIMENSIONS
    Cavaterra, Cecilia
    Rocca, Elisabetta
    Wu, Hao
    Xu, Xiang
    [J]. SIAM JOURNAL ON MATHEMATICAL ANALYSIS, 2016, 48 (02) : 1368 - 1399
  • [9] Global existence and regularity of solutions for active liquid crystals
    Chen, Gui-Qiang
    Majumdar, Apala
    Wang, Dehua
    Zhang, Rongfang
    [J]. JOURNAL OF DIFFERENTIAL EQUATIONS, 2017, 263 (01) : 202 - 239
  • [10] On asymptotic isotropy for a hydrodynamic model of liquid crystals
    Dai, Mimi
    Feireisl, Eduard
    Rocca, Elisabetta
    Schimperna, Giulio
    Schonbek, Maria E.
    [J]. ASYMPTOTIC ANALYSIS, 2016, 97 (3-4) : 189 - 210