Basis property of the Legendre polynomials in variable exponent Lebesgue spaces

被引:0
|
作者
Magomed-Kasumov, M. G. [1 ,2 ]
Shakh-Emirov, T. N. [1 ]
Gadzhimirzaev, R. M. [1 ]
机构
[1] Russian Acad Sci, Daghestan Fed Res Ctr, Makhachkala, Russia
[2] Russian Acad Sci, Vladikavkaz Sci Ctr, Vladikavkaz, Russia
关键词
Lebesgue space; variable exponent; Legendre polynomials; basis; the Dini-Lipschitz condition;
D O I
10.4213/sm9891e
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Sharapudinov proved that the Legendre polynomials form a basis of the Lebesgue space with variable exponent p(x) if p(x) > 1 satisfies the Dini-Lipschitz condition and is constant near the endpoints of the orthogonality interval. We prove that the system of Legendre polynomials forms a basis of these spaces without the condition that the variable exponent be constant near the endpoints. Bibliography: 9 titles.
引用
收藏
页码:234 / 249
页数:16
相关论文
共 50 条