Development and External Validation of an Artificial Intelligence-Based Method for Scalable Chest Radiograph Diagnosis: A Multi-Country Cross-Sectional Study

被引:0
作者
Liu, Zeye [1 ,3 ,4 ,5 ,6 ]
Xu, Jing [2 ]
Yin, Chengliang [7 ,8 ]
Han, Guojing [9 ]
Che, Yue [10 ,11 ]
Fan, Ge [12 ]
Li, Xiaofei [13 ]
Xie, Lixin [9 ]
Bao, Lei [14 ]
Peng, Zimin [14 ]
Wang, Jinduo [15 ]
Chen, Yan [15 ]
Zhang, Fengwen [3 ,4 ,5 ,6 ]
Ouyang, Wenbin [3 ,4 ,5 ,6 ]
Wang, Shouzheng [3 ,4 ,5 ,6 ]
Guo, Junwei [16 ]
Ma, Yanqiu [17 ]
Meng, Xiangzhi [18 ]
Fan, Taibing [19 ]
Zhi, Aihua [20 ]
Dawaciren [21 ]
Yi, Kang [22 ,23 ]
You, Tao [22 ,23 ]
Yang, Yuejin [2 ]
Liu, Jue [4 ,6 ]
Shi, Yi [1 ]
Huang, Yuan [2 ]
Pan, Xiangbin [3 ,4 ,5 ,6 ]
机构
[1] Peking Univ, Peking Univ Peoples Hosp, Dept Cardiac Surg, Beijing, Peoples R China
[2] Chinese Acad Med Sci & Peking Union Med Coll, Natl Ctr Cardiovasc Dis, Fuwai Hosp, State Key Lab Cardiovasc Dis, Beijing, Peoples R China
[3] Chinese Acad Med Sci & Peking Union Med Coll, China & Fuwai Hosp, Natl Ctr Cardiovasc Dis, Dept Struct Heart Dis, Beijing 100037, Peoples R China
[4] Natl Hlth Commiss, Key Lab Cardiovasc Regenerat Med, Beijing 100037, Peoples R China
[5] Chinese Acad Med Sci, Key Lab Innovat Cardiovasc Devices, Beijing 100037, Peoples R China
[6] Chinese Acad Med Sci, Fuwai Hosp, Natl Clin Res Ctr Cardiovasc Dis, Beijing 100037, Peoples R China
[7] Chinese Peoples Liberat Army Gen Hosp, Med Big Data Res Ctr, Med Innovat Res Div, Beijing, Peoples R China
[8] Chinese Peoples Liberat Army PLA Gen Hosp, Natl Engn Res Ctr Med Big Data Applicat Technol, Beijing, Peoples R China
[9] Chinese Peoples Liberat Army Gen Hosp, Coll Pulm & Crit Care Med, Beijing, Peoples R China
[10] Renmin Univ China, Ctr Hlth Policy Res & Evaluat, Beijing, Peoples R China
[11] Renmin Univ China, Sch Publ Adm & Policy, Beijing, Peoples R China
[12] Tencent Inc, Lightspeed & Quantum Studios, Shenzhen, Peoples R China
[13] Chinese Acad Med Sci & Peking Union Med Coll, Fuwai Hosp, Dept Cardiol, Beijing, Peoples R China
[14] Shenzhen Benevolence Med Sci&Tech Co Ltd, Shenzhen, Peoples R China
[15] Univ Sci & Technol China, Sch Cyber Sci & Technol, Hefei 230000, Peoples R China
[16] Chinese Acad Med Sci & Peking Union Med Coll, Peking Union Med Coll Hosp, Dept Resp & Crit Care Med, Beijing, Peoples R China
[17] Peking Univ Third Hosp, Beijing, Peoples R China
[18] Chinese Acad Med Sci & Peking Union Med Coll, Natl Canc Ctr, Dept Thorac Surg Oncol, Canc Hosp, Beijing 100021, Peoples R China
[19] Zhengzhou Univ, Dept Pediat Cardiac Surg, Fuwai Cent China Cardiovasc Hosp, Zhengzhou 450000, Henan, Peoples R China
[20] Fuwai Yunnan Cardiovasc Hosp, Dept Med Imaging, Kunming 650000, Peoples R China
[21] Autonomous Reg Peoples Hosp, Xizang, Peoples R China
[22] Gansu Prov Hosp, Dept Cardiovasc Surg, Lanzhou, Peoples R China
[23] Gansu Int Sci & Technol Cooperat Base Diag & Treat, Lanzhou, Peoples R China
基金
中国国家自然科学基金;
关键词
X-RAY; COVID-19; FEASIBILITY; IMAGES;
D O I
10.34133/research.0426
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Problem: Chest radiography is a crucial tool for diagnosing thoracic disorders, but interpretation errors and a lack of qualified practitioners can cause delays in treatment. Aim: This study aimed to develop a reliable multi-classification artificial intelligence (AI) tool to improve the accuracy and efficiency of chest radiograph diagnosis. Methods: We developed a convolutional neural network (CNN) capable of distinguishing among 26 thoracic diagnoses. The model was trained and externally validated using 795,055 chest radiographs from 13 datasets across 4 countries. Results: The CNN model achieved an average area under the curve (AUC) of 0.961 across all 26 diagnoses in the testing set. COVID-19 detection achieved perfect accuracy (AUC 1.000, [95% confidence interval {CI}, 1.000 to 1.000]), while effusion or pleural effusion detection showed the lowest accuracy (AUC 0.8453, [95% CI, 0.8417 to 0.8489]). In external validation, the model demonstrated strong reproducibility and generalizability within the local dataset, achieving an AUC of 0.9634 for lung opacity detection (95% CI, 0.9423 to 0.9702). The CNN outperformed both radiologists and nonradiological physicians, particularly in trans-device image recognition. Even for diseases not specifically trained on, such as aortic dissection, the AI model showed considerable scalability and enhanced diagnostic accuracy for physicians of varying experience levels (all P < 0.05). Additionally, our model exhibited no gender bias (P > 0.05). Conclusion: The developed AI algorithm, now available as professional web-based software, substantively improves chest radiograph interpretation. This research advances medical imaging and offers substantial diagnostic support in clinical settings.
引用
收藏
页数:15
相关论文
共 13 条
  • [1] An artificial intelligence-based deep learning algorithm for the diagnosis of diabetic neuropathy using corneal confocal microscopy: a development and validation study
    Williams, Bryan M.
    Borroni, Davide
    Liu, Rongjun
    Zhao, Yitian
    Zhang, Jiong
    Lim, Jonathan
    Ma, Baikai
    Romano, Vito
    Qi, Hong
    Ferdousi, Maryam
    Petropoulos, Ioannis N.
    Ponirakis, Georgios
    Kaye, Stephen
    Malik, Rayaz A.
    Alam, Uazman
    Zheng, Yalin
    DIABETOLOGIA, 2020, 63 (02) : 419 - 430
  • [2] Oral manifestations in young adults infected with COVID-19 and impact of smoking: a multi-country cross-sectional study
    El Tantawi, Maha
    Sabbagh, Heba Jafar
    Alkhateeb, Nada Abubakor
    Quritum, Maryam
    Abourdan, Joud
    Qureshi, Nafeesa
    Qureshi, Shabnum
    Hamoud, Ahmed
    Mahmoud, Nada
    Odeh, Ruba
    Al-Khanati, Nuraldeen Maher
    Jaber, Rawiah
    Balkhoyor, Abdulrahman Loaie
    Shabi, Mohammed
    Folayan, Morenike O.
    Gomaa, Noha
    Al-Nahdi, Raqiya
    Mahmoud, Nawal
    El Wazziki, Hanane
    Alnaas, Manal
    Samodien, Bahia
    Mahmoud, Rawa
    Abu Assab, Nour
    Saad, Sherin
    Al-Hachim, Sondos
    Alshaikh, Ali
    Abdelaziz, Wafaa
    PEERJ, 2022, 10
  • [3] COVID-19 vaccine acceptance and its socio-demographic and emotional determinants: A multi-country cross-sectional study
    de Figueiredo, A.
    Simas, C.
    Larson, H. J.
    VACCINE, 2023, 41 (02) : 354 - 364
  • [4] Association between workplace and mental health and its mechanisms during COVID-19 pandemic: A cross-sectional, population-based, multi-country study
    Zhang, Pan
    Chen, Shanquan
    JOURNAL OF AFFECTIVE DISORDERS, 2022, 310 : 116 - 122
  • [5] Associations between the COVID-19 pandemic and women's fertility intentions: a multi-country, cross-sectional (I-SHARE) study
    Zhao, Min
    O'Hara, Caitlin Alsandria
    Sahril, Norhafizah Bte
    Liu, Huijun
    Pei, Kaiyan
    Ivanova, Olena
    Larsson, Elin C.
    Shamu, Simukai
    Kpokiri, Eneyi
    Cleeve, Amanda
    Tucker, Joseph D.
    Michielsen, Kristien
    Zhang, Wei-Hong
    BMJ SEXUAL & REPRODUCTIVE HEALTH, 2024, 50 (02) : 83 - 91
  • [6] Associations between breastfeeding intention, breastfeeding practices and post-natal depression during the COVID-19 pandemic: A multi-country cross-sectional study
    Chang, Yan-Shing
    Li, Kan M. C.
    Chien, Li-Yin
    Lee, Eun Y.
    Hong, Seo A.
    Coca, Kelly P.
    MATERNAL AND CHILD NUTRITION, 2023, 19 (01)
  • [7] Moderating effect of work fatigue on the association between resilience and posttraumatic stress symptoms: a cross-sectional multi-country study among pharmacists during the COVID-19 pandemic
    Younes, Samar
    Hallit, Souheil
    Mohammed, Irfan
    El Khatib, Sarah
    Brytek-Matera, Anna
    Eze, Shadrach Chinecherem
    Egwu, Kenneth
    Jabeen, Rawshan
    Pavlovic, Nebojsa
    Salameh, Pascale
    Cherfane, Michelle
    Akel, Marwan
    Haddad, Chadia
    Choueiry, Randa
    Fekih-Romdhane, Feten
    Iskandar, Katia
    BIOPSYCHOSOCIAL MEDICINE, 2024, 18 (01)
  • [8] Moderating effect of work fatigue on the association between resilience and posttraumatic stress symptoms: a cross-sectional multi-country study among pharmacists during the COVID-19 pandemic
    Samar Younes
    Souheil Hallit
    Irfan Mohammed
    Sarah El Khatib
    Anna Brytek-Matera
    Shadrach Chinecherem Eze
    Kenneth Egwu
    Rawshan Jabeen
    Nebojša Pavlović
    Pascale Salameh
    Michelle Cherfane
    Marwan Akel
    Chadia Haddad
    Randa Choueiry
    Feten Fekih-Romdhane
    Katia Iskandar
    BioPsychoSocial Medicine, 18
  • [9] Association of depressive symptoms with incidence and mortality rates of COVID-19 over 2 years among healthcare workers in 20 countries: multi-country serial cross-sectional study
    Asaoka, Hiroki
    Watanabe, Kazuhiro
    Miyamoto, Yuki
    Restrepo-Henao, Alexandra
    van der Ven, Els
    Moro, Maria Francesca
    Alnasser, Lubna A.
    Ayinde, Olatunde
    Balalian, Arin A.
    Basagoitia, Armando
    Durand-Arias, Sol
    Eskin, Mehmet
    Fernandez-Jimenez, Eduardo
    Ines, Freytes Frey Marcela
    Gimenez, Luis
    Hoek, Hans W.
    Jaldo, Rodrigo Ezequiel
    Lindert, Jutta
    Maldonado, Humberto
    Martinez-Ales, Gonzalo
    Mediavilla, Roberto
    McCormack, Clare
    Narvaez, Javier
    Ouali, Uta
    Barrera-Perez, Aida
    Calgua-Guerra, Erwin
    Ramirez, Jorge
    Rodriguez, Ana Maria
    Seblova, Dominika
    da Silva, Andrea Tenorio Correia
    Valeri, Linda
    Gureje, Oye
    Ballester, Dinarte
    Carta, Mauro Giovanni
    Isahakyan, Anna
    Jamoussi, Amira
    Seblova, Jana
    Solis-Soto, Maria Teresa
    Alvarado, Ruben
    Susser, Ezra
    Mascayano, Franco
    Nishi, Daisuke
    BMC MEDICINE, 2024, 22 (01):
  • [10] Development and validation of a reliable method for automated measurements of psoas muscle volume in CT scans using deep learning-based segmentation: a cross-sectional study
    Choi, Woorim
    Kim, Chul-Ho
    Yoo, Hyein
    Yun, Hee Rim
    Kim, Da-Wit
    Kim, Ji Wan
    BMJ OPEN, 2024, 14 (05):