Calibration curve for radiation dose estimation using FDXR gene expression biodosimetry - premises and pitfalls

被引:1
作者
Brzoska, Kamil [1 ]
Abend, Michael [2 ]
O'Brien, Grainne [3 ]
Gregoire, Eric [4 ]
Port, Matthias [2 ]
Badie, Christophe [3 ]
机构
[1] Inst Nucl Chem & technol, Ctr Radiobiol & Biol dosimetry, Dorodna 16, PL-03195 Warsaw, Poland
[2] Bundeswehr Inst Radiobiol, Munich, Germany
[3] UK Hlth Secur Agcy, Ctr Radiat Chem & Environm Hazards, Canc Mech & Biomarkers Grp, London, Oxon, England
[4] Inst Radioprotect & Surete Nucl IRSN, PSE Sante, SERAMED, LRAcc, Fontenay aux Roses, France
关键词
FDXR; gene expression; biological dosimetry; qPCR; PERIPHERAL-BLOOD; VIVO; BIOMARKERS;
D O I
10.1080/09553002.2024.2373751
中图分类号
Q [生物科学];
学科分类号
07 ; 0710 ; 09 ;
摘要
PurposeRadiation-induced alterations in gene expression show great promise for dose reconstruction and for severity prediction of acute health effects. Among several genes explored as potential biomarkers, FDXR is widely used due to high upregulation in white blood cells following radiation exposure. Nonetheless, the absence of a standardized protocols for gene expression-based biodosimetry is a notable gap that warrants attention to enhance the accuracy, reproducibility and reliability. The objective of this study was to evaluate the sensitivity of transcriptional biodosimetry to differences in protocols used by different laboratories and establish guidelines for the calculation of calibration curve using FDXR expression data.Material and MethodsTwo sets of irradiated blood samples generated during RENEB exercise were used. The first included samples irradiated with known doses including: 0, 0.25, 0.5, 1, 2, 3 and 4 Gy. The second set consisted of three 'blind' samples irradiated with 1.8 Gy, 0.4 Gy and a sham-irradiated sample. After irradiation, samples were incubated at 37 degrees C over 24 h and sent to participating laboratories, where RNA isolation and FDXR expression analysis by qPCR were performed using sets of primers/probes and reference genes specific for each laboratory. Calibration curves based on FDXR expression data were generated using non-linear and linear regression and used for dose estimation of 'blind' samples.ResultsDose estimates for sham-irradiated sample (0.020-0.024 Gy) and sample irradiated with 0.4 Gy (0.369-0.381 Gy) showed remarkable consistency across all laboratories, closely approximating the true doses regardless variation in primers/probes and reference genes used. For sample irradiated with 1.8 Gy the dose estimates were less precise (1.198-2.011 Gy) but remained within an acceptable margin for triage within the context of high dose range.ConclusionMethodological differences in reference genes and primers/probes used for FDXR expression measurement do not have a significant impact on the dose estimates generated, provided that all reference genes performed as expected and the primers/probes target a similar set of transcript variants. The preferred method for constructing a calibration curve based on FDXR expression data involves employing linear regression to establish a function that describes the relationship between the logarithm of absorbed dose and FDXR Delta Ct values. However, one should be careful with using non-irradiated sample data as these cannot be accurately represented on a logarithmic scale. A standard curve generated using this approach can give reliable dose estimations in a dose range from 50 mGy to 4 Gy at least.
引用
收藏
页码:1202 / 1212
页数:11
相关论文
共 30 条
[1]   RENEB Inter-Laboratory Comparison 2021: The Gene Expression Assay [J].
Abend, M. ;
Amundson, S. A. ;
Badie, C. ;
Brzoska, K. ;
Kriehuber, R. ;
Lacombe, J. ;
Lopez-Riego, M. ;
Lumniczky, K. ;
Endesfelder, D. ;
O'Brien, G. ;
Doucha-Senf, S. ;
Ghandhi, S. A. ;
Hargitai, R. ;
Kis, E. ;
Lundholm, L. ;
Oskamp, D. ;
Ostheim, P. ;
Schuele, S. ;
Schwanke, D. ;
Shuryak, I. ;
Siebenwith, C. ;
Unverricht-Yeboah, M. ;
Wojcik, A. ;
Yang, J. ;
Zenhausern, F. ;
Port, M. .
RADIATION RESEARCH, 2023, 199 (06) :598-615
[2]   Inter-laboratory comparison of gene expression biodosimetry for protracted radiation exposures as part of the RENEB and EURADOS WG10 2019 exercise [J].
Abend, M. ;
Amundson, S. A. ;
Badie, C. ;
Brzoska, K. ;
Hargitai, R. ;
Kriehuber, R. ;
Schuele, S. ;
Kis, E. ;
Ghandhi, S. A. ;
Lumniczky, K. ;
Morton, S. R. ;
O'Brien, G. ;
Oskamp, D. ;
Ostheim, P. ;
Siebenwirth, C. ;
Shuryak, I. ;
Szatmari, T. ;
Unverricht-Yeboah, M. ;
Ainsbury, E. ;
Bassinet, C. ;
Kulka, U. ;
Oestreicher, U. ;
Ristic, Y. ;
Trompier, F. ;
Wojcik, A. ;
Waldner, L. ;
Port, M. .
SCIENTIFIC REPORTS, 2021, 11 (01)
[3]   Examining Radiation-Induced In Vivo and In Vitro Gene Expression Changes of the Peripheral Blood in Different Laboratories for Biodosimetry Purposes: First RENEB Gene Expression Study [J].
Abend, M. ;
Badie, C. ;
Quintens, R. ;
Kriehuber, R. ;
Manning, G. ;
Macaeva, E. ;
Njima, M. ;
Oskamp, D. ;
Strunz, S. ;
Moertl, S. ;
Doucha-Senf, S. ;
Dahlke, S. ;
Menzel, J. ;
Port, M. .
RADIATION RESEARCH, 2016, 185 (02) :109-123
[4]   Radiation-induced gene expression changes used for biodosimetry and clinical outcome prediction: challenges and promises [J].
Abend, Michael ;
Ostheim, Patrick ;
Port, Matthias .
CYTOGENETIC AND GENOME RESEARCH, 2024, 163 (3-4) :223-230
[5]   Laboratory Intercomparison of Gene Expression Assays [J].
Badie, C. ;
Kabacik, S. ;
Balagurunathan, Y. ;
Bernard, N. ;
Brengues, M. ;
Faggioni, G. ;
Greither, R. ;
Lista, F. ;
Peinnequin, A. ;
Poyot, T. ;
Herodin, F. ;
Missel, A. ;
Terbrueggen, B. ;
Zenhausern, F. ;
Rothkamm, K. ;
Meineke, V. ;
Braselmann, H. ;
Beinke, C. ;
Abend, M. .
RADIATION RESEARCH, 2013, 180 (02) :138-148
[6]   Transcriptional Dynamics of DNA Damage Responsive Genes in Circulating Leukocytes during Radiotherapy [J].
Cruz-Garcia, Lourdes ;
Nasser, Farah ;
O'Brien, Grainne ;
Grepl, Jakub ;
Vinnikov, Volodymyr ;
Starenkiy, Viktor ;
Artiukh, Sergiy ;
Gramatiuk, Svetlana ;
Badie, Christophe .
CANCERS, 2022, 14 (11)
[7]   In Vivo Validation of Alternative FDXR Transcripts in Human Blood in Response to Ionizing Radiation [J].
Cruz-Garcia, Lourdes ;
O'Brien, Grainne ;
Sipos, Botond ;
Mayes, Simon ;
Tichy, Ales ;
Sirak, Igor ;
Davidkova, Marie ;
Markova, Marketa ;
Turner, Daniel J. ;
Badie, Christophe .
INTERNATIONAL JOURNAL OF MOLECULAR SCIENCES, 2020, 21 (21) :1-18
[8]   Generation of a Transcriptional Radiation Exposure Signature in Human Blood Using Long-Read Nanopore Sequencing [J].
Cruz-Garcia, Lourdes ;
O'Brien, Grainne ;
Sipos, Botond ;
Mayes, Simon ;
Love, Michael, I ;
Turner, Daniel J. ;
Badie, Christophe .
RADIATION RESEARCH, 2020, 193 (02) :143-154
[9]   RENEB Inter-Laboratory comparison 2017: limits and pitfalls of ILCs [J].
Gregoire, Eric ;
Barquinero, Joan Francesc ;
Gruel, Gaetan ;
Benadjaoud, Mohamedamine ;
Martinez, Juan S. ;
Beinke, Christina ;
Balajee, Adayabalam ;
Beukes, Philip ;
Blakely, William F. ;
Dominguez, Inmaculada ;
Duy, Pham Ngoc ;
Gil, Octavia Monteiro ;
Guclu, Inci ;
Guogyte, Kamile ;
Hadjidekova, Savina Petrova ;
Hadjidekova, Valeria ;
Hande, Prakash ;
Jang, Seongjae ;
Lumniczky, Katalin ;
Meschini, Roberta ;
Milic, Mirta ;
Montoro, Alegria ;
Moquet, Jayne ;
Moreno, Mercedes ;
Norton, Farrah N. ;
Oestreicher, Ursula ;
Pajic, Jelena ;
Sabatier, Laure ;
Sommer, Sylwester ;
Testa, Antonella ;
Terzoudi, Georgia ;
Valente, Marco ;
Venkatachalam, Perumal ;
Vral, Anne ;
Wilkins, Ruth C. ;
Wojcik, Andrzej ;
Zafiropoulos, Demetre ;
Kulka, Ulrike .
INTERNATIONAL JOURNAL OF RADIATION BIOLOGY, 2021, 97 (07) :888-905
[10]   A 4-Gene Signature of CDKN1, FDXR, SESN1 and PCNA Radiation Biomarkers for Prediction of Patient Radiosensitivity [J].
Howe, Orla ;
White, Lisa ;
Cullen, Daniel ;
O'Brien, Grainne ;
Shields, Laura ;
Bryant, Jane ;
Noone, Emma ;
Bradshaw, Shirley ;
Finn, Marie ;
Dunne, Mary ;
Shannon, Aoife M. ;
Armstrong, John ;
McClean, Brendan ;
Meade, Aidan ;
Badie, Christophe ;
Lyng, Fiona M. .
INTERNATIONAL JOURNAL OF MOLECULAR SCIENCES, 2021, 22 (19)