Preparation of oxygen vacancy-rich 3D-Ag nanosheet arrays electrodes for efficient CO2 reduction into CO through in situ oxidation-reduction

被引:4
作者
Jin, Shengnan [1 ]
Ma, Jing [1 ]
Wei, Wei [2 ]
Liu, Shaomin [3 ]
Qin, Guotong [1 ]
机构
[1] Beihang Univ, Sch Mat Sci & Engn, Shahe Campus, Beijing 102206, Peoples R China
[2] Beijing Union Univ, Coll Biochem Engn, 18 Sanqu, Beijing 100023, Peoples R China
[3] Great Bay Univ, Sch Engn, Sch Phys Sci, Dongguan 523000, Peoples R China
基金
中国国家自然科学基金;
关键词
In situ oxidation-reduction; Ag nanosheet array; Oxygen vacancy; CO; 2; electroreduction; CO formation; CARBON-DIOXIDE; ELECTROCHEMICAL REDUCTION; AG NANOPARTICLES; ELECTROREDUCTION; CATALYST; SURFACE; ANIONS;
D O I
10.1016/j.seppur.2024.127665
中图分类号
TQ [化学工业];
学科分类号
0817 ;
摘要
Enhancing the working current density is a great challenge that limits the practical applications of the CO 2 electrochemical reduction. In this study, a facile method was developed to prepare 3D-Ag nanosheet arrays (3DAg NA) electrodes for efficient CO 2 reduction into CO through in situ oxidation-reduction. The resulting electrodes exhibited high specific surface area and abundant oxygen vacancies. 3D-Ag NA on Ag foil electrode (3DAg NA/Ag) demonstrated a significantly enhanced current density of 25.9 mA/cm 2 at -1.06 V vs. RHE in an Hcell, surpassing the performance of Ag foil, Ag nanoparticles and Ag 2 O nanoparticles electrodes. Moreover, 3DAg NA on low cost graphite (3D-Ag NA/C) showed a current density of 24.3 mA/cm 2 at a remarkble low potential of -0.96 V vs. RHE. It was found that the formation of a dense Ag 2 O layer play a critical role in the establishing the 3D-Ag NA. Furthermore, CO 2 -TPD and DFT studies revealed that the 3D-Ag NA exhibited high CO 2 adsorption capacity and low CO 2 activation energy. This study presents a promising approach for scalable electrode preparation in the electrochemical reduction of CO 2 to CO, enabling high current density and selectivity.
引用
收藏
页数:10
相关论文
共 61 条
[1]   Unraveling the Influence of Oxygen Vacancy Concentration on Electrocatalytic CO2 Reduction to Formate over Indium Oxide Catalysts [J].
Cheng, Qin ;
Huang, Ming ;
Xiao, Lei ;
Mou, Shiyong ;
Zhao, Xiaoli ;
Xie, Yuqun ;
Jiang, Guodong ;
Jiang, Xinyue ;
Dong, Fan .
ACS CATALYSIS, 2023, 13 (06) :4021-4029
[2]   Atomically Dispersed Transition Metals on Carbon Nanotubes with Ultrahigh Loading for Selective Electrochemical Carbon Dioxide Reduction [J].
Cheng, Yi ;
Zhao, Shiyong ;
Johannessen, Bernt ;
Veder, Jean-Pierre ;
Saunders, Martin ;
Rowles, Matthew R. ;
Cheng, Min ;
Liu, Chang ;
Chisholm, Matthew F. ;
De Marco, Roland ;
Cheng, Hui-Ming ;
Yang, Shi-Ze ;
Jiang, San Ping .
ADVANCED MATERIALS, 2018, 30 (13)
[3]   In Situ ATR-SEIRAS of Carbon Dioxide Reduction at a Plasmonic Silver Cathode [J].
Corson, Elizabeth R. ;
Kas, Recep ;
Kostecki, Robert ;
Urban, Jeffrey J. ;
Smith, Wilson A. ;
McCloskey, Bryan D. ;
Kortlever, Ruud .
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2020, 142 (27) :11750-11762
[4]   Synergistic integration of thermocatalysis and photocatalysis on black defective (BiO)2CO3 microspheres [J].
Dong, Fan ;
Xiong, Ting ;
Sun, Yanjuan ;
Huang, Hongwei ;
Wu, Zhongbiao .
JOURNAL OF MATERIALS CHEMISTRY A, 2015, 3 (36) :18466-18474
[5]   Rightsizing carbon dioxide removal [J].
Field, Christopher B. ;
Mach, Katharine J. .
SCIENCE, 2017, 356 (6339) :706-707
[6]   Synergistic Cr2O3@Ag Heterostructure Enhanced Electrocatalytic CO2 Reduction to CO [J].
Fu, Huai Qin ;
Liu, Junxian ;
Bedford, Nicholas M. ;
Wang, Yun ;
Sun, Ji Wei ;
Zou, Yu ;
Dong, Mengyang ;
Wright, Joshua ;
Diao, Hui ;
Liu, Porun ;
Yang, Hua Gui ;
Zhao, Huijun .
ADVANCED MATERIALS, 2022, 34 (29)
[7]   Carbon quantum dot-covered porous Ag with enhanced activity for selective electroreduction of CO2 to CO [J].
Gao, Jin ;
Zhao, Siqi ;
Guo, Sijie ;
Wang, Huibo ;
Sun, Yue ;
Yao, Bowen ;
Liu, Yang ;
Huang, Hui ;
Kang, Zhenhui .
INORGANIC CHEMISTRY FRONTIERS, 2019, 6 (06) :1453-1460
[8]   In-situ assembly of Cu/CuxO composite with CNT/Bacterial cellulose matrix as a support for efficient CO2 electroreduction reaction to CO and C2H4 [J].
Gao, Lu ;
Zhou, Yue ;
Li, Lulu ;
Chen, Lin ;
Peng, Luwei ;
Qiao, Jinli ;
Hong, Feng F. .
SEPARATION AND PURIFICATION TECHNOLOGY, 2022, 280
[9]   Oxygen Vacancies in ZnO Nanosheets Enhance CO2 Electrochemical Reduction to CO [J].
Geng, Zhigang ;
Kong, Xiangdong ;
Chen, Weiwei ;
Su, Hongyang ;
Liu, Yan ;
Cai, Fan ;
Wang, Guoxiong ;
Zeng, Jie .
ANGEWANDTE CHEMIE-INTERNATIONAL EDITION, 2018, 57 (21) :6054-6059
[10]   Achieve Superior Electrocatalytic Performance by Surface Copper Vacancy Defects during Electrochemical Etching Process [J].
Guo, Niankun ;
Xue, Hui ;
Bao, Amurisana ;
Wang, Zihong ;
Sun, Jing ;
Song, Tianshan ;
Ge, Xin ;
Zhang, Wei ;
Huang, Keke ;
He, Feng ;
Wang, Qin .
ANGEWANDTE CHEMIE-INTERNATIONAL EDITION, 2020, 59 (33) :13778-13784