Quantitative bounds in the central limit theorem for m-dependent random variables

被引:0
作者
Janson, Svante [1 ]
Pratelli, Luca [2 ]
Rigo, Pietro [3 ]
机构
[1] Uppsala Univ, Dept Math, POB 480, SE-75106 Uppsala, Sweden
[2] Acad Navale, Viale Italia 72, I-57100 Livorno, Italy
[3] Univ Bologna, Dipartimento Sci Stat P Fortunati, Via Belle Arti 41, I-40126 Bologna, Italy
来源
ALEA-LATIN AMERICAN JOURNAL OF PROBABILITY AND MATHEMATICAL STATISTICS | 2024年 / 21卷
关键词
Central limit theorem; Lindeberg condition; m-dependent random variables; Quantitative bound; Total variation distance; Wasserstein distance; INVARIANCE-PRINCIPLES; NORMALITY; SEQUENCES;
D O I
10.30757/ALEA.v21-10
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
For each n >= 1, let X-n,X-1, . . . , X-n,X-Nn be real random variables and S-n = Sigma(Nn)(i=1) X-n,X-i. Let m(n) >= 1 be an integer. Suppose (X-n,X-1, . . . , X-n,X-Nn) is m(n)-dependent, E(X-ni) = 0, E(X-ni(2)) < infinity and sigma(2)(n) := E(S-n(2)) > 0 for all n and i. Then, d(W) (S-n/sigma(n), Z) <= 30 {c(1/3) + 12U(n)(c/2)(1/2)} for all n >= 1 and c > 0, where d(W) is Wasserstein distance, Z a standard normal random variable and U-n(c) = m(n)/sigma(2)(n) X Sigma(Nn)(i=1) E[X-n,i(2) 1{|X-n,X-i| > c sigma(n)/m(n)}]. Among other things, this estimate of d(W) (S-n/sigma(n), Z) yields a similar estimate of d(TV) (S-n/sigma(n), Z) where d(TV) is total variation distance.
引用
收藏
页码:245 / 265
页数:21
相关论文
共 26 条
  • [1] COMPARISON METHOD FOR DISTRIBUTION FUNCTIONS OF SUMS OF INDEPENDENT AND DEPENDENT RANDOM VARIABLES
    BERGSTROM, H
    [J]. THEORY OF PROBILITY AND ITS APPLICATIONS,USSR, 1970, 15 (03): : 430 - +
  • [2] CENTRAL LIMIT THEOREM FOR META-DEPENDENT RANDOM-VARIABLES WITH UNBOUNDED META
    BERK, KN
    [J]. ANNALS OF PROBABILITY, 1973, 1 (02) : 352 - 354
  • [3] Bradley R. C, 2007, Introduction to Strong Mixing Conditions, V1-3
  • [4] CENTRAL LIMIT-THEOREMS FOR NON-LINEAR FUNCTIONALS OF GAUSSIAN FIELDS
    BREUER, P
    MAJOR, P
    [J]. JOURNAL OF MULTIVARIATE ANALYSIS, 1983, 13 (03) : 425 - 441
  • [5] CONTINUOUS BREUER-MAJOR THEOREM: TIGHTNESS AND NONSTATIONARITY
    Campese, Simon
    Nourdin, Ivan
    Nualart, David
    [J]. ANNALS OF PROBABILITY, 2020, 48 (01) : 147 - 177
  • [6] Central limit theorems for high dimensional dependent data
    Chang, Jinyuan
    Chen, Xiaohui
    Wu, Mingcong
    [J]. BERNOULLI, 2024, 30 (01) : 712 - 742
  • [7] Chen LHY, 2011, PROBAB APPL SER, P1, DOI 10.1007/978-3-642-15007-4
  • [8] Strong Invariance Principles with Rate for "Reverse" Martingale Differences and Applications
    Cuny, Christophe
    Merlevede, Florence
    [J]. JOURNAL OF THEORETICAL PROBABILITY, 2015, 28 (01) : 137 - 183
  • [9] DasGupta A, 2008, SPRINGER TEXTS STAT, P1
  • [10] Rates of convergence in the central limit theorem for martingales in the non stationary setting
    Dedecker, Jerome
    Merlevede, Florence
    Rio, Emmanuel
    [J]. ANNALES DE L INSTITUT HENRI POINCARE-PROBABILITES ET STATISTIQUES, 2022, 58 (02): : 945 - 966