ON THE LOCAL CONTROLLABILITY FOR OPTIMAL CONTROL PROBLEMS

被引:0
作者
Arutyunov, A. V. [1 ]
Zhukovskiy, S. E. [1 ]
机构
[1] RAS, VA Trapeznikov Inst Control Sci, Moscow, Russia
来源
MATEMATICKI VESNIK | 2024年 / 76卷 / 1-2期
基金
俄罗斯科学基金会;
关键词
Optimal control; controllability; Pontryagin's maximum principle; MAXIMUM PRINCIPLE;
D O I
10.57016/MV-TXBR5253
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
. We consider an optimal control problem on the fixed interval of time with the right endpoint constraint. We introduce the concept of controllability for this problem. The main result of the paper states that if for the optimal control problem the Pontryagin maximum principle fails on the given admissible process then this process satisfies the controllability condition.
引用
收藏
页码:56 / 65
页数:10
相关论文
共 13 条
[1]  
Alekseev V.M., 1987, Optimal Control
[2]   Existence of local solutions in constrained dynamic systems [J].
Arutyunov, A. V. ;
Zhukovskiy, S. E. .
APPLICABLE ANALYSIS, 2011, 90 (06) :889-898
[3]  
Arutyunov A.V., 2006, Pontryagin's maximum principle
[4]   2-normal processes in controlled dynamical systems [J].
Arutyunov, AV ;
Jacimovic, V .
DIFFERENTIAL EQUATIONS, 2002, 38 (08) :1081-1094
[5]   ThePpontryagin maximum principle and sufficient optimality conditions for nonlinear problems [J].
Arutyunov, AV .
DIFFERENTIAL EQUATIONS, 2003, 39 (12) :1671-1679
[6]   A simple 'finite approximations' proof of the Pontryagin maximum principle under reduced differentiability hypotheses [J].
Arutyunov, AV ;
Vinter, RB .
SET-VALUED ANALYSIS, 2004, 12 (1-2) :5-24
[7]  
Borisovich Yu G, 2005, INTRO THEORY MULTIVA
[8]   VARIATIONAL PRINCIPLE [J].
EKELAND, I .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 1974, 47 (02) :324-353
[9]  
Gamkrelidze R.V., 1977, Fundamentals of optimal control
[10]  
Ioffe A.D., 1979, THEORY EXTREMAL PROB