GAAD: GAN-Enabled Autoencoder for Real-Time Sensor Anomaly Detection and Recovery in Autonomous Driving

被引:6
作者
Rezaei, Shahrbanoo [1 ]
Masoud, Neda [2 ]
Khojandi, Anahita [1 ]
机构
[1] Univ Tennessee, Dept Ind & Syst Engn, Knoxville, TN 37996 USA
[2] Univ Michigan, Dept Civil & Environm Engn, Ann Arbor, MI 48109 USA
关键词
Anomaly detection; autoencoders; autonomous vehicle; cybersecurity; generative adversarial network (GAN); sensor fault; INTRUSION DETECTION SYSTEM;
D O I
10.1109/JSEN.2024.3361460
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
Autonomous vehicles are an essential component of the intelligent transportation system, and their safe operation depends on reliable data from their sensors. However, these vehicles are vulnerable to cyberattacks and sensor failures that can generate anomalous data and potentially result in fatal crashes. Therefore, there is a critical need for a real-time anomaly detection and recovery approach to mitigate these risks. This study proposes a novel unsupervised/semi-supervised machine learning approach, which we refer to as GAN-enabled autoencoder for anomaly detection (GAAD). GAAD aims to detect different types of anomalies and recover anomaly-free data streams in autonomous driving. GAAD incorporates an additional autoencoder module into a generative adversarial network (GAN), which enables effective learning of the distribution of nonanomalous data. We evaluate GAAD using the Lyft Level 5 dataset and demonstrate its superior performance compared to state-of-the-art benchmark. Our results indicate that GAAD can effectively detect anomalies and recover true signals from anomalous data, enhancing the safety and reliability of autonomous vehicles.
引用
收藏
页码:11734 / 11742
页数:9
相关论文
共 23 条
[1]   DeepClean: A Robust Deep Learning Technique for Autonomous Vehicle Camera Data Privacy [J].
Adeboye, Olayinka ;
Dargahi, Tooska ;
Babaie, Meisam ;
Saraee, Mohamad ;
Yu, Chia-Mu .
IEEE ACCESS, 2022, 10 :124534-124544
[2]   GANomaly: Semi-supervised Anomaly Detection via Adversarial Training [J].
Akcay, Samet ;
Atapour-Abarghouei, Amir ;
Breckon, Toby P. .
COMPUTER VISION - ACCV 2018, PT III, 2019, 11363 :622-637
[3]  
Alheeti KMA, 2017, IEEE ICCE
[4]  
Lipton ZC, 2017, Arxiv, DOI [arXiv:1702.04782, 10.48550/arXiv.1702.04782]
[5]  
Donahue J., 2017, arXiv
[6]   Toward Interpretability in Fault Diagnosis for Autonomous Vehicles: Interpretation of Sensor Data Anomalies [J].
Fang, Yukun ;
Min, Haigen ;
Wu, Xia ;
Lei, Xiaoping ;
Chen, Shixiang ;
Teixeira, Rui ;
Zhao, Xiangmo .
IEEE SENSORS JOURNAL, 2023, 23 (05) :5014-5027
[7]  
Goodfellow IJ, 2014, ADV NEUR IN, V27, P2672
[8]  
Haldimann D., 2019, arXiv
[9]   CANet: An Unsupervised Intrusion Detection System for High Dimensional CAN Bus Data [J].
Hanselmann, Markus ;
Strauss, Thilo ;
Dormann, Katharina ;
Ulmer, Holger .
IEEE ACCESS, 2020, 8 :58194-58205
[10]  
Houston J, 2020, Arxiv, DOI arXiv:2006.14480