An Implicit, Asymptotic-Preserving and Energy-Charge-Conserving Method for the Vlasov-Maxwell System Near Quasi-Neutrality

被引:0
作者
Ma, Chuwen [1 ]
Jin, Shi [1 ,2 ]
机构
[1] Shanghai Jiao Tong Univ, Inst Nat Sci, Shanghai 200240, Peoples R China
[2] Shanghai Jiao Tong Univ, Minist Educ, Key Lab Sci & Engn Comp, Shanghai 200240, Peoples R China
基金
中国博士后科学基金;
关键词
Vlasov-Maxwell; quasi-neutrality; asymptotic-preserving; energy-charge conservation; PARTICLE METHODS; WEIBEL INSTABILITY; MAGNETIC-FIELD; POISSON SYSTEM; PLASMA; CONVERGENCE; SCHEMES; SHEATH; MODEL;
D O I
10.4208/cicp.OA-2023-0133
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
An implicit, asymptotic -preserving and energy -charge -conserving (APECC) Particle -In -Cell (PIC) method is proposed to solve the Vlasov-Maxwell (VM) equations in the quasi -neutral regime. Charge conservation is enforced by particle orbital averaging and fixed sub -time steps. The truncation error depending on the number of sub -time steps is further analyzed. The temporal discretization is chosen by the Crank-Nicolson method to conserve the discrete energy exactly. The key step in the asymptotic -preserving iteration for the nonlinear system is based on a decomposition of the current density deduced from the Vlasov equation in the source of the Maxwell model. Moreover, we show that the convergence is independent of the quasineutral parameter. Extensive numerical experiments show that the proposed method can achieve asymptotic preservation and energy -charge conservation.
引用
收藏
页码:724 / 760
页数:37
相关论文
共 38 条
[1]  
Birdsall C. K., 2018, Plasma Physics via Computer Simulation
[2]   Analysis of a Particle Method for the One-Dimensional Vlasov-Maxwell System [J].
Bostan, Mihai .
NUMERICAL METHODS FOR PARTIAL DIFFERENTIAL EQUATIONS, 2009, 25 (04) :757-782
[3]   Kinetic saturation of the Weibel instability in a collisionless plasma [J].
Califano, F ;
Pegoraro, F ;
Bulanov, SV ;
Mangeney, A .
PHYSICAL REVIEW E, 1998, 57 (06) :7048-7059
[4]   Impact of kinetic processes on the macroscopic nonlinear evolution of the electromagnetic-beam-plasma instability [J].
Califano, F ;
Pegoraro, F ;
Bulanov, SV .
PHYSICAL REVIEW LETTERS, 2000, 84 (16) :3602-3605
[5]   Fast formation of magnetic islands in a plasma in the presence of counterstreaming electrons [J].
Califano, F ;
Attico, N ;
Pegoraro, F ;
Bertin, G ;
Bulanov, SV .
PHYSICAL REVIEW LETTERS, 2001, 86 (23) :5293-5296
[6]  
Chen F. F., 1984, Introduction to Plasma Physics and Controlled Fusion
[7]   A semi-implicit, energy- and charge-conserving particle-in-cell algorithm for the relativistic Vlasov-Maxwell equations [J].
Chen, G. ;
Chacon, L. ;
Yin, L. ;
Albright, B. J. ;
Stark, D. J. ;
Bird, R. F. .
JOURNAL OF COMPUTATIONAL PHYSICS, 2020, 407
[8]   A multi-dimensional, energy- and charge-conserving, nonlinearly implicit, electromagnetic Vlasov-Darwin particle-in-cell algorithm [J].
Chen, G. ;
Chacon, L. .
COMPUTER PHYSICS COMMUNICATIONS, 2015, 197 :73-87
[9]   An energy- and charge-conserving, implicit, electrostatic particle-in-cell algorithm [J].
Chen, G. ;
Chacon, L. ;
Barnes, D. C. .
JOURNAL OF COMPUTATIONAL PHYSICS, 2011, 230 (18) :7018-7036
[10]  
Chen GY, 2023, Arxiv, DOI arXiv:2205.09187