Self-Supervised Learning via Maximum Entropy Coding

被引:0
|
作者
Liu, Xin [1 ]
Wang, Zhongdao [1 ]
Li, Yali [1 ]
Wang, Shengjin [1 ]
机构
[1] Tsinghua Univ, Dept Elect Engn, Beijing Natl Res Ctr Informat Sci & Technol BNRis, Beijing, Peoples R China
关键词
D O I
暂无
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
A mainstream type of current self-supervised learning methods pursues a general-purpose representation that can be well transferred to downstream tasks, typically by optimizing on a given pretext task such as instance discrimination. In this work, we argue that existing pretext tasks inevitably introduce biases into the learned representation, which in turn leads to biased transfer performance on various downstream tasks. To cope with this issue, we propose Maximum Entropy Coding (MEC), a more principled objective that explicitly optimizes on the structure of the representation, so that the learned representation is less biased and thus generalizes better to unseen downstream tasks. Inspired by the principle of maximum entropy in information theory, we hypothesize that a generalizable representation should be the one that admits the maximum entropy among all plausible representations. To make the objective end-to-end trainable, we propose to leverage the minimal coding length in lossy data coding as a computationally tractable surrogate for the entropy, and further derive a scalable reformulation of the objective that allows fast computation. Extensive experiments demonstrate that MEC learns a more generalizable representation than previous methods based on specific pretext tasks. It achieves state-of-the-art performance consistently on various downstream tasks, including not only ImageNet linear probe, but also semi-supervised classification, object detection, instance segmentation, and object tracking. Interestingly, we show that existing batch-wise and feature-wise self-supervised objectives could be seen equivalent to low-order approximations of MEC. Code and pre-trained models are available at https://github.com/xinliu20/MEC.
引用
收藏
页数:15
相关论文
共 50 条
  • [1] MinEnt: Minimum entropy for self-supervised representation learning
    Li, Shuo
    Liu, Fang
    Hao, Zehua
    Jiao, Licheng
    Liu, Xu
    Guo, Yuwei
    PATTERN RECOGNITION, 2023, 138
  • [2] CONTRASTIVE SEPARATIVE CODING FOR SELF-SUPERVISED REPRESENTATION LEARNING
    Wang, Jun
    Lam, Max W. Y.
    Su, Dan
    Yu, Dong
    2021 IEEE INTERNATIONAL CONFERENCE ON ACOUSTICS, SPEECH AND SIGNAL PROCESSING (ICASSP 2021), 2021, : 3865 - 3869
  • [3] Weakly supervised semantic segmentation via self-supervised destruction learning
    Li, Jinlong
    Jie, Zequn
    Wang, Xu
    Zhou, Yu
    Ma, Lin
    Jiang, Jianmin
    NEUROCOMPUTING, 2023, 561
  • [4] Boosting Self-Supervised Learning via Knowledge Transfer
    Noroozi, Mehdi
    Vinjimoor, Ananth
    Favaro, Paolo
    Pirsiavash, Hamed
    2018 IEEE/CVF CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR), 2018, : 9359 - 9367
  • [5] Self-Supervised Vessel Segmentation via Adversarial Learning
    Ma, Yuxin
    Hua, Yang
    Deng, Hanming
    Song, Tao
    Wang, Hao
    Xue, Zhengui
    Cao, Heng
    Ma, Ruhui
    Guan, Haibing
    2021 IEEE/CVF INTERNATIONAL CONFERENCE ON COMPUTER VISION (ICCV 2021), 2021, : 7516 - 7525
  • [6] Self-Supervised Learning via Conditional Motion Propagation
    Zhan, Xiaohang
    Pan, Xingang
    Liu, Ziwei
    Lin, Dahua
    Loy, Chen Change
    2019 IEEE/CVF CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR 2019), 2019, : 1881 - 1889
  • [7] Self-supervised graph representation learning via bootstrapping
    Che, Feihu
    Yang, Guohua
    Zhang, Dawei
    Tao, Jianhua
    Liu, Tong
    NEUROCOMPUTING, 2021, 456 (456) : 88 - 96
  • [8] Semi-supervised Multitask Learning via Self-training and Maximum Entropy Discrimination
    Chao, Guoqing
    Sun, Shiliang
    NEURAL INFORMATION PROCESSING, ICONIP 2012, PT III, 2012, 7665 : 340 - 347
  • [9] MVEB: Self-Supervised Learning With Multi-View Entropy Bottleneck
    Wen, Liangjian
    Wang, Xiasi
    Liu, Jianzhuang
    Xu, Zenglin
    IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, 2024, 46 (09) : 6097 - 6108
  • [10] Generalized Semi-Supervised Learning via Self-Supervised Feature Adaptation
    Liang, Jiachen
    Hou, Ruibing
    Chang, Hong
    Ma, Bingpeng
    Shan, Shiguang
    Chen, Xilin
    ADVANCES IN NEURAL INFORMATION PROCESSING SYSTEMS 36 (NEURIPS 2023), 2023,