Deep Learning-Based Automated Measurement of Murine Bone Length in Radiographs

被引:0
|
作者
Rong, Ruichen [1 ]
Denton, Kristin [2 ]
Jin, Kevin W. [1 ]
Quan, Peiran [1 ]
Wen, Zhuoyu [1 ]
Kozlitina, Julia [3 ]
Lyon, Stephen [4 ]
Wang, Aileen [1 ]
Wise, Carol A. [2 ,3 ,5 ,6 ]
Beutler, Bruce [4 ]
Yang, Donghan M. [1 ]
Li, Qiwei [7 ]
Rios, Jonathan J. [2 ,3 ,5 ,6 ,8 ]
Xiao, Guanghua [1 ,8 ,9 ]
机构
[1] Univ Texas Southwestern Med Ctr, Quantitat Biomed Res Ctr, Peter ODonnell Jr Sch Publ Hlth, Dallas, TX 75390 USA
[2] Scottish Rite Children, Ctr Pediat Bone Biol & Translat Res, Dallas, TX 75219 USA
[3] Univ Texas Southwestern Med Ctr, McDermott Ctr Human Growth & Dev, Dallas, TX 75390 USA
[4] Univ Texas Southwestern Med Ctr, Ctr Genet Host Def, Dallas, TX 75390 USA
[5] Univ Texas Southwestern Med Ctr, Dept Orthopaed Surg, Dallas, TX 75390 USA
[6] Univ Texas Southwestern Med Ctr, Dept Pediat, Dallas, TX 75390 USA
[7] Univ Texas Dallas, Dept Math Sci, Richardson, TX 75083 USA
[8] Univ Texas Southwestern Med Ctr, Simmons Comprehens Canc Ctr, Dallas, TX 75390 USA
[9] Univ Texas Southwestern Med Ctr, Dept Bioinformat, Dallas, TX 75390 USA
来源
BIOENGINEERING-BASEL | 2024年 / 11卷 / 07期
基金
美国国家科学基金会; 美国国家卫生研究院;
关键词
keypoint detection; deep learning; mouse models;
D O I
10.3390/bioengineering11070670
中图分类号
Q81 [生物工程学(生物技术)]; Q93 [微生物学];
学科分类号
071005 ; 0836 ; 090102 ; 100705 ;
摘要
Genetic mouse models of skeletal abnormalities have demonstrated promise in the identification of phenotypes relevant to human skeletal diseases. Traditionally, phenotypes are assessed by manually examining radiographs, a tedious and potentially error-prone process. In response, this study developed a deep learning-based model that streamlines the measurement of murine bone lengths from radiographs in an accurate and reproducible manner. A bone detection and measurement pipeline utilizing the Keypoint R-CNN algorithm with an EfficientNet-B3 feature extraction backbone was developed to detect murine bone positions and measure their lengths. The pipeline was developed utilizing 94 X-ray images with expert annotations on the start and end position of each murine bone. The accuracy of our pipeline was evaluated on an independent dataset test with 592 images, and further validated on a previously published dataset of 21,300 mouse radiographs. The results showed that our model performed comparably to humans in measuring tibia and femur lengths (R-2 > 0.92, p-value = 0) and significantly outperformed humans in measuring pelvic lengths in terms of precision and consistency. Furthermore, the model improved the precision and consistency of genetic association mapping results, identifying significant associations between genetic mutations and skeletal phenotypes with reduced variability. This study demonstrates the feasibility and efficiency of automated murine bone length measurement in the identification of mouse models of abnormal skeletal phenotypes.
引用
收藏
页数:12
相关论文
共 50 条
  • [21] Deep learning for automated measurement of CSA related acromion morphological parameters on anteroposterior radiographs
    Alike, Yamuhanmode
    Li, Cheng
    Hou, Jingyi
    Long, Yi
    Zhang, Zongda
    Ye, Mengjie
    Yang, Rui
    EUROPEAN JOURNAL OF RADIOLOGY, 2023, 168
  • [22] Deep learning-based prognostication in idiopathic pulmonary fibrosis using chest radiographs
    Lee, Taehee
    Ahn, Su Yeon
    Kim, Jihang
    Park, Jong Sun
    Kwon, Byoung Soo
    Choi, Sun Mi
    Goo, Jin Mo
    Park, Chang Min
    Nam, Ju Gang
    EUROPEAN RADIOLOGY, 2024, 34 (07) : 4206 - 4217
  • [23] Testing Deep Learning-based Visual Perception for Automated Driving
    Abrecht, Stephanie
    Gauerhof, Lydia
    Gladisch, Christoph
    Groh, Konrad
    Heinzemann, Christian
    Woehrle, Matthias
    ACM TRANSACTIONS ON CYBER-PHYSICAL SYSTEMS, 2021, 5 (04)
  • [24] Automated deep learning-based wide-band receiver
    Azari, Bahar
    Cheng, Hai
    Soltani, Nasim
    Li, Haoqing
    Li, Yanyu
    Belgiovine, Mauro
    Imbiriba, Tales
    D'Oro, Salvatore
    Melodia, Tommaso
    Wang, Yanzhi
    Closas, Pau
    Chowdhury, Kaushik
    Erdogmus, Deniz
    COMPUTER NETWORKS, 2022, 218
  • [25] Automated Deep Learning-Based Classification of Wilms Tumor Histopathology
    van der Kamp, Ananda
    de Bel, Thomas
    van Alst, Ludo
    Rutgers, Jikke
    van den Heuvel-Eibrink, Marry M.
    Mavinkurve-Groothuis, Annelies M. C.
    van der Laak, Jeroen
    de Krijger, Ronald R.
    CANCERS, 2023, 15 (09)
  • [26] Sagittal intervertebral rotational motion: a deep learning-based measurement on flexion-neutral-extension cervical lateral radiographs
    Yan, Yuting
    Zhang, Xinsheng
    Meng, Yu
    Shen, Qiang
    He, Linyang
    Cheng, Guohua
    Gong, Xiangyang
    BMC MUSCULOSKELETAL DISORDERS, 2022, 23 (01)
  • [27] Deep Learning-Based Automated Lip-Reading: A Survey
    Fenghour, Souheil
    Chen, Daqing
    Guo, Kun
    Li, Bo
    Xiao, Perry
    IEEE ACCESS, 2021, 9 (09): : 121184 - 121205
  • [28] Deep Learning for Automated Classification of Hip Hardware on Radiographs
    Ma, Yuntong
    Bauer, Justin L.
    Yoon, Acacia H.
    Beaulieu, Christopher F.
    Yoon, Luke
    Do, Bao H.
    Fang, Charles X.
    JOURNAL OF IMAGING INFORMATICS IN MEDICINE, 2025, 38 (02): : 988 - 996
  • [29] Measurement of ureteral length: Comparison of deep learning-based method and other estimation methods on CT and KUB
    Wang, Kexin
    Zhao, Zheng
    Liu, Yi
    Nai, Rile
    Yuan, Changwei
    Wu, Pengsheng
    Li, Jialun
    Zhang, Xiaodong
    Wang, He
    Computers in Biology and Medicine, 2025, 184
  • [30] Deep learning-based automated measurement of hip key angles and auxiliary diagnosis of developmental dysplasia of the hip
    Li, Ruixin
    Wang, Xiao
    Li, Tianran
    Zhang, Beibei
    Liu, Xiaoming
    Li, Wenhua
    Sui, Qirui
    BMC MUSCULOSKELETAL DISORDERS, 2024, 25 (01)