CONGRUENCE SUBGROUPS OF BRAID GROUPS AND CRYSTALLOGRAPHIC QUOTIENTS. PART I

被引:0
作者
Bellingeri, Paolo [1 ]
Damiani, Celeste [2 ]
Ocampo, Oscar [3 ]
Stylianakis, Charalampos [4 ]
机构
[1] Normandie Univ, UNICAEN, CNRS, LMNO, F-14000 Caen, France
[2] Fdn Ist Italiano Tecnol, Genoa, Italy
[3] Univ Fed Bahia, Dept Matemat IME, BR-40170110 Salvador, BA, Brazil
[4] Univ Aegean, Dept Math, Karlovassi 83200, Samos, Greece
关键词
braid groups; mapping class groups; congruence subgroups; symplectic representation; BURAU REPRESENTATION; MONODROMY; FAITHFUL;
D O I
10.1017/S1446788724000089
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
This paper is the first of a two part series devoted to describing relations between congruence and crystallographic braid groups. We recall and introduce some elements belonging to congruence braid groups and we establish some (iso)-morphisms between crystallographic braid groups and corresponding quotients of congruence braid groups.
引用
收藏
页数:19
相关论文
共 41 条
  • [1] BRAIDS, MONODROMY AND SYMPLECTIC GROUPS
    ACAMPO, N
    [J]. COMMENTARII MATHEMATICI HELVETICI, 1979, 54 (02) : 318 - 327
  • [2] Appel J, 2020, Arxiv, DOI arXiv:2011.13876
  • [3] Arnold VI., 1968, FUNCT ANAL APPL+, V2, P1
  • [4] Artin E., 1926, ABH MATH SEM HAMBURG, V4, P47, DOI DOI 10.1007/BF02950718
  • [5] Bass H., 1967, PUBL MATH-PARIS, V33, P59, DOI DOI 10.1007/BF02684586
  • [6] Torsion subgroups of quasi-abelianized braid groups
    Beck, Vincent
    Marin, Ivan
    [J]. JOURNAL OF ALGEBRA, 2020, 558 : 3 - 23
  • [7] Braid groups and the co-Hopfian property
    Bell, Robert W.
    Margalit, Dan
    [J]. JOURNAL OF ALGEBRA, 2006, 303 (01) : 275 - 294
  • [8] Bellingeri P, 2024, Arxiv, DOI arXiv:2404.05804
  • [9] Unrestricted virtual braids and crystallographic braid groups
    Bellingeri, Paolo
    Guaschi, John
    Makri, Stavroula
    [J]. BOLETIN DE LA SOCIEDAD MATEMATICA MEXICANA, 2022, 28 (03):
  • [10] Burau representation for n=4
    Beridze, A.
    Traczyk, P.
    [J]. JOURNAL OF KNOT THEORY AND ITS RAMIFICATIONS, 2018, 27 (03)