A Fuzzy Entropy Approach for Portfolio Selection

被引:1
作者
Bonacic, Milena [1 ]
Lopez-Ospina, Hector [1 ]
Bravo, Cristian [2 ]
Perez, Juan [1 ]
机构
[1] Univ Los Andes, Mons Alvaro Portillo 12455, Santiago 7620086, Chile
[2] Univ Western Ontario, London, ON N6A 5B7, Canada
关键词
portfolio selection; fuzzy entropy; Shannon's entropy; multi-criteria optimization; TOPSIS; 91-10; OPTIMIZATION MODEL;
D O I
10.3390/math12131921
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Portfolio management typically aims to achieve better returns per unit of risk by building efficient portfolios. The Markowitz framework is the classic approach used when decision-makers know the expected returns and covariance matrix of assets. However, the theory does not always apply when the time horizon of investments is short; the realized return and covariance of different assets are usually far from the expected values, and considering additional factors, such as diversification and information ambiguity, can lead to better portfolios. This study proposes models for constructing efficient portfolios using fuzzy parameters like entropy, return, variance, and entropy membership functions in multi-criteria optimization models. Our approach leverages aspects related to multi-criteria optimization and Shannon entropy to deal with diversification, and fuzzy and fuzzy entropy variants provide a better representation of the ambiguity of the information according to the investors' deadline. We compare 418 optimal portfolios for different objectives (return, variance, and entropy), using data from 2003 to 2023 of indexes from the USA, EU, China, and Japan. We use the Sharpe index as a decision variable, in addition to the multi-criteria decision analysis method TOPSIS. Our models provided high-efficiency portfolios, particularly those considering fuzzy entropy membership functions for return and variance.
引用
收藏
页数:20
相关论文
共 44 条
[1]   Redefining fuzzy entropy with a general framework [J].
Aggarwal, Manish .
EXPERT SYSTEMS WITH APPLICATIONS, 2021, 164
[2]  
[Anonymous], 1989, Financial Analysts Journal
[3]   On the Computation of the Efficient Frontier of the Portfolio Selection Problem [J].
Calvo, Clara ;
Ivorra, Carlos ;
Liern, Vicente .
JOURNAL OF APPLIED MATHEMATICS, 2012,
[4]   Relation between higher order comoments and dependence structure of equity portfolio [J].
Cerrato, Mario ;
Crosby, John ;
Kim, Minjoo ;
Zhao, Yang .
JOURNAL OF EMPIRICAL FINANCE, 2017, 40 :101-120
[5]   The effects of errors in means, variances, and correlations on the mean-variance framework [J].
CHUNG, M. U. N. K., I ;
LEE, Y. O. N. G. J. A. E. ;
KIM, J. A. N. G. H. O. ;
KIM, W. O. O. C. H. A. N. G. ;
FABOZZI, F. R. A. N. K. J. .
QUANTITATIVE FINANCE, 2022, 22 (10) :1893-1903
[6]   The research and comparison of multi-objective portfolio based on intuitionistic fuzzy optimization [J].
Deng, Xue ;
Pan, Xueqin .
COMPUTERS & INDUSTRIAL ENGINEERING, 2018, 124 :411-421
[7]  
Fang Y, 2008, LECT NOTES ECON MATH, V609, P1, DOI 10.1007/978-3-540-77926-1
[8]   Random Matrix Theory and Nested Clustered Optimization on high-dimensional portfolios [J].
Garcia-Medina, Andres ;
Rodriguez-Camejo, Benito .
INTERNATIONAL JOURNAL OF MODERN PHYSICS C, 2024, 35 (08)
[9]   Two-step estimators of high-dimensional correlation matrices [J].
Garcia-Medina, Andres ;
Micciche, Salvatore ;
Mantegna, Rosario N. .
PHYSICAL REVIEW E, 2023, 108 (04)
[10]  
Gupta P, 2014, STUD FUZZ SOFT COMP, V316, P1, DOI 10.1007/978-3-642-54652-5