Correlation of methane production with physiological traits in Trichodesmium IMS 101 grown with methylphosphonate at different temperatures

被引:2
作者
Zou, Chuze [1 ]
Yi, Xiangqi [2 ]
Li, He [3 ]
Bizic, Mina [4 ,5 ]
Berman-Frank, Ilana [6 ]
Gao, Kunshan [1 ,3 ]
机构
[1] Xiamen Univ, Coll Ocean & Earth Sci, State Key Lab Marine Environm Sci, Xiamen, Peoples R China
[2] Jimei Univ, Polar & Marine Res Inst, Coll Harbor & Coastal Engn, Xiamen, Peoples R China
[3] Jiangsu Ocean Univ, Co Innovat Ctr Jiangsu Marine Bioind Technol, Lianyungang, Peoples R China
[4] Tech Univ Berlin, Inst Environm Technol, Dept Environm Microbi, Berlin, Germany
[5] Leibniz Inst Freshwater Ecol & Inland Fisheries IG, Dept Plankton & Microbial Ecol, Stechlin, Germany
[6] Univ Haifa, Leon H Charney Sch Marine Sci, Dept Marine Biol, Haifa, Israel
基金
中国国家自然科学基金;
关键词
cyanobacteria; diazotroph; growth; methane; N-2-fixation; photosynthesis; phosphorus; Trichodesmium; NITROGEN-FIXATION; MARINE CYANOBACTERIUM; NORTH-ATLANTIC; PHOSPHORUS; OCEAN; PHOTOSYNTHESIS; RELEASE; SURFACE; SPP; DIAZOTROPHS;
D O I
10.3389/fmicb.2024.1396369
中图分类号
Q93 [微生物学];
学科分类号
071005 ; 100705 ;
摘要
The diazotrophic cyanobacterium Trichodesmium has been recognized as a potentially significant contributor to aerobic methane generation via several mechanisms including the utilization of methylphophonate (MPn) as a source of phosphorus. Currently, there is no information about how environmental factors regulate methane production by Trichodesmium. Here, we grew Trichodesmium IMS101 at five temperatures ranging from 16 to 31 degrees C, and found that its methane production rates increased with rising temperatures to peak (1.028 +/- 0.040 nmol CH4 mu mol POC-1 day(-1)) at 27 degrees C, and then declined. Its specific growth rate changed from 0.03 +/- 0.01 d(-1) to 0.34 +/- 0.02 d(-1), with the optimal growth temperature identified between 27 and 31 degrees C. Within the tested temperature range the Q(10) for the methane production rate was 4.6 +/- 0.7, indicating a high sensitivity to thermal changes. In parallel, the methane production rates showed robust positive correlations with the assimilation rates of carbon, nitrogen, and phosphorus, resulting in the methane production quotients (molar ratio of carbon, nitrogen, or phosphorus assimilated to methane produced) of 227-494 for carbon, 40-128 for nitrogen, and 1.8-3.4 for phosphorus within the tested temperature range. Based on the experimental data, we estimated that the methane released from Trichodesmium can offset about 1% of its CO2 mitigation effects.
引用
收藏
页数:11
相关论文
共 83 条
[1]   Structural remodelling of the carbon-phosphorus lyase machinery by a dual ABC ATPase [J].
Amstrup, Soren K. ;
Ong, Sui Ching ;
Sofos, Nicholas ;
Karlsen, Jesper L. ;
Skjerning, Ragnhild B. ;
Boesen, Thomas ;
Enghild, Jan J. ;
Hove-Jensen, Bjarne ;
Brodersen, Ditlev E. .
NATURE COMMUNICATIONS, 2023, 14 (01)
[2]   Climate-driven trends in contemporary ocean productivity [J].
Behrenfeld, Michael J. ;
O'Malley, Robert T. ;
Siegel, David A. ;
McClain, Charles R. ;
Sarmiento, Jorge L. ;
Feldman, Gene C. ;
Milligan, Allen J. ;
Falkowski, Paul G. ;
Letelier, Ricardo M. ;
Boss, Emmanuel S. .
NATURE, 2006, 444 (7120) :752-755
[3]   Trichodesmium - a widespread marine cyanobacterium with unusual nitrogen fixation properties [J].
Bergman, Birgitta ;
Sandh, Gustaf ;
Lin, Senjie ;
Larsson, John ;
Carpenter, Edward J. .
FEMS MICROBIOLOGY REVIEWS, 2013, 37 (03) :286-302
[4]   Segregation of nitrogen fixation and oxygenic photosynthesis in the marine cyanobacterium Trichodesmium [J].
Berman-Frank, I ;
Lundgren, P ;
Chen, YB ;
Küpper, H ;
Kolber, Z ;
Bergman, B ;
Falkowski, P .
SCIENCE, 2001, 294 (5546) :1534-1537
[5]   Phosphonate metabolism of Trichodesmium IMS101 and the production of greenhouse gases [J].
Beversdorf, L. J. ;
White, A. E. ;
Bjoerkman, K. M. ;
Letelier, R. M. ;
Karl, D. M. .
LIMNOLOGY AND OCEANOGRAPHY, 2010, 55 (04) :1768-1778
[6]   Aquatic and terrestrial cyanobacteria produce methane [J].
Bizic, M. ;
Klintzsch, T. ;
Ionescu, D. ;
Hindiyeh, M. Y. ;
Gunthel, M. ;
Muro-Pastor, A. M. ;
Eckert, W. ;
Urich, T. ;
Keppler, F. ;
Grossart, H-P .
SCIENCE ADVANCES, 2020, 6 (03)
[7]  
Bizic-Ionescu M., 2018, BIOGENESIS HYDROCARB, P1, DOI [DOI 10.1007/978-3-319-53114-4_10-1, 10.1007/978-3-319-53114-4_10-1]
[8]  
Bjorkman KM, 2003, LIMNOL OCEANOGR, V48, P1049
[9]   A Key Marine Diazotroph in a Changing Ocean: The Interacting Effects of Temperature, CO2 and Light on the Growth of Trichodesmium erythraeum IMS101 [J].
Boatman, Tobias G. ;
Lawson, Tracy ;
Geider, Richard J. .
PLOS ONE, 2017, 12 (01)
[10]   Structural basis for methylphosphonate biosynthesis [J].
Born, David A. ;
Ulrich, Emily C. ;
Ju, Kou-San ;
Peck, Spencer C. ;
van der Donk, Wilfred A. ;
Drennan, Catherine L. .
SCIENCE, 2017, 358 (6368) :1336-1338