共 36 条
Empirical curvelet transform based deep DenseNet model to predict NDVI using RGB drone imagery data
被引:1
作者:

Diykh, Mohammed
论文数: 0 引用数: 0
h-index: 0
机构:
Univ Southern Queensland, UniSQ Coll, Ipswich, Qld 4305, Australia
Univ Thi Qar, Coll Educ Pure Sci, Thi Qar, Iraq
Al Ayen Univ, Sci Res Ctr, New Era & Dev Civil Engn Res Grp, Thi Qar 64001, Nasiriyah, Iraq Univ Southern Queensland, UniSQ Coll, Ipswich, Qld 4305, Australia

Ali, Mumtaz
论文数: 0 引用数: 0
h-index: 0
机构:
Univ Southern Queensland, UniSQ Coll, Ipswich, Qld 4305, Australia
Univ Prince Edward Isl, Canadian Ctr Climate Change & Adaptat, St Peters Bay, PE, Canada Univ Southern Queensland, UniSQ Coll, Ipswich, Qld 4305, Australia

Jamei, Mehdi
论文数: 0 引用数: 0
h-index: 0
机构:
Univ Prince Edward Isl, Canadian Ctr Climate Change & Adaptat, St Peters Bay, PE, Canada
Shahid Chamran Univ Ahvaz, Fac Civil Engn & Architecture, Ahvaz, Iran Univ Southern Queensland, UniSQ Coll, Ipswich, Qld 4305, Australia

Abdulla, Shahab
论文数: 0 引用数: 0
h-index: 0
机构:
Univ Southern Queensland, UniSQ Coll, Ipswich, Qld 4305, Australia Univ Southern Queensland, UniSQ Coll, Ipswich, Qld 4305, Australia

Uddin, Md Palash
论文数: 0 引用数: 0
h-index: 0
机构:
Deakin Univ, Sch Informat Technol, Geelong, Vic 3220, Australia Univ Southern Queensland, UniSQ Coll, Ipswich, Qld 4305, Australia

Farooque, Aitazaz Ahsan
论文数: 0 引用数: 0
h-index: 0
机构:
Univ Prince Edward Isl, Canadian Ctr Climate Change & Adaptat, St Peters Bay, PE, Canada
Univ Prince Edward Isl, Fac Sustainable Design Engn, Charlottetown, PE C1A 4P3, Canada Univ Southern Queensland, UniSQ Coll, Ipswich, Qld 4305, Australia

Labban, Abdulhaleem H.
论文数: 0 引用数: 0
h-index: 0
机构:
King Abdulaziz Univ, Dept Meteorol, Jeddah 21589, Saudi Arabia Univ Southern Queensland, UniSQ Coll, Ipswich, Qld 4305, Australia

Alabdally, Hussein
论文数: 0 引用数: 0
h-index: 0
机构:
Univ Southern Queensland, UniSQ Coll, Ipswich, Qld 4305, Australia Univ Southern Queensland, UniSQ Coll, Ipswich, Qld 4305, Australia
机构:
[1] Univ Southern Queensland, UniSQ Coll, Ipswich, Qld 4305, Australia
[2] Univ Prince Edward Isl, Canadian Ctr Climate Change & Adaptat, St Peters Bay, PE, Canada
[3] Univ Prince Edward Isl, Fac Sustainable Design Engn, Charlottetown, PE C1A 4P3, Canada
[4] Shahid Chamran Univ Ahvaz, Fac Civil Engn & Architecture, Ahvaz, Iran
[5] Deakin Univ, Sch Informat Technol, Geelong, Vic 3220, Australia
[6] Univ Thi Qar, Coll Educ Pure Sci, Thi Qar, Iraq
[7] Al Ayen Univ, Sci Res Ctr, New Era & Dev Civil Engn Res Grp, Thi Qar 64001, Nasiriyah, Iraq
[8] King Abdulaziz Univ, Dept Meteorol, Jeddah 21589, Saudi Arabia
关键词:
NDVI;
RGB;
DenseNet;
Curvelet coefficients;
Drone image;
Prediction;
CONVOLUTIONAL NETWORK;
VIDEO QUALITY;
PSNR;
D O I:
10.1016/j.compag.2024.108964
中图分类号:
S [农业科学];
学科分类号:
09 ;
摘要:
Predicting accurately the Normalized Difference Vegetation Index (NDVI) trends from RGB images are essential to monitor crops and identify issues related to plant diseases, and water shortages. The current NDVI prediction models are primarily based on traditional machine learning models which lack reliability due to the problem related to atmospheric conditions. To predict NDVI in Prince Edward Island using RGB drone imagery data, this paper proposed a novel framework integrating empirical curvelet transform and DenseNet models. Each channel of RGB drone imagery data was passed through empirical curvelet transform method where the curvelet coefficients were analysed which result in creating a new formula to design NDVI. The output of the new formula was sent to the deep DenseNet to predict the final NDVI. The proposed model was evaluated using quantitative metrics including, Q-Q plot, regression, correlation coefficients, structural similarity (SSIM), peak signal to noise ratio (PSNR) and mean square error (MSE) as well as accuracy (ACC), sensitivity (SEN), f1-score, specificity. The obtained results showed that the proposed model outperformed the previous models by scoring the highest values of SSIM = 0.98, and lowest MSE = 120. It is believed that the proposed model is helpful to support farmers in monitoring the growth and plant health as well as to identify crops problems.
引用
收藏
页数:15
相关论文
共 36 条
- [21] Fusion of optical and SAR images based on deep learning to reconstruct vegetation NDVI time series in cloud-prone regions[J]. INTERNATIONAL JOURNAL OF APPLIED EARTH OBSERVATION AND GEOINFORMATION, 2022, 112Li, Jingbo论文数: 0 引用数: 0 h-index: 0机构: Natl Engn Res Ctr Informat Technol Agr, Beijing 100097, Peoples R China Henan Polytech Univ, Sch Surveying & Mapping Land Informat Engn, Jiaozuo 454000, Peoples R China Beijing Acad Agr & Forestry Sci, Informat Technol Res Ctr, Key Lab Quantitat Remote Sensing Agr, Minist Agr & Rural Affairs, Beijing 100097, Peoples R ChinaLi, Changchun论文数: 0 引用数: 0 h-index: 0机构: Henan Polytech Univ, Sch Surveying & Mapping Land Informat Engn, Jiaozuo 454000, Peoples R China Beijing Acad Agr & Forestry Sci, Informat Technol Res Ctr, Key Lab Quantitat Remote Sensing Agr, Minist Agr & Rural Affairs, Beijing 100097, Peoples R ChinaXu, Weimeng论文数: 0 引用数: 0 h-index: 0机构: Natl Engn Res Ctr Informat Technol Agr, Beijing 100097, Peoples R China Changan Univ, Sch Geol Engn & Surveying & Mapping, Xian 710054, Peoples R China Beijing Acad Agr & Forestry Sci, Informat Technol Res Ctr, Key Lab Quantitat Remote Sensing Agr, Minist Agr & Rural Affairs, Beijing 100097, Peoples R ChinaFeng, Haikuan论文数: 0 引用数: 0 h-index: 0机构: Natl Engn Res Ctr Informat Technol Agr, Beijing 100097, Peoples R China Beijing Acad Agr & Forestry Sci, Informat Technol Res Ctr, Key Lab Quantitat Remote Sensing Agr, Minist Agr & Rural Affairs, Beijing 100097, Peoples R ChinaZhao, Fa论文数: 0 引用数: 0 h-index: 0机构: Natl Engn Res Ctr Informat Technol Agr, Beijing 100097, Peoples R China Beijing Acad Agr & Forestry Sci, Informat Technol Res Ctr, Key Lab Quantitat Remote Sensing Agr, Minist Agr & Rural Affairs, Beijing 100097, Peoples R ChinaLong, Huiling论文数: 0 引用数: 0 h-index: 0机构: Natl Engn Res Ctr Informat Technol Agr, Beijing 100097, Peoples R China Beijing Acad Agr & Forestry Sci, Informat Technol Res Ctr, Key Lab Quantitat Remote Sensing Agr, Minist Agr & Rural Affairs, Beijing 100097, Peoples R ChinaMeng, Yang论文数: 0 引用数: 0 h-index: 0机构: Natl Engn Res Ctr Informat Technol Agr, Beijing 100097, Peoples R China Beijing Acad Agr & Forestry Sci, Informat Technol Res Ctr, Key Lab Quantitat Remote Sensing Agr, Minist Agr & Rural Affairs, Beijing 100097, Peoples R ChinaChen, Weinan论文数: 0 引用数: 0 h-index: 0机构: Henan Polytech Univ, Sch Surveying & Mapping Land Informat Engn, Jiaozuo 454000, Peoples R China Beijing Acad Agr & Forestry Sci, Informat Technol Res Ctr, Key Lab Quantitat Remote Sensing Agr, Minist Agr & Rural Affairs, Beijing 100097, Peoples R ChinaYang, Hao论文数: 0 引用数: 0 h-index: 0机构: Natl Engn Res Ctr Informat Technol Agr, Beijing 100097, Peoples R China Beijing Acad Agr & Forestry Sci, Informat Technol Res Ctr, Key Lab Quantitat Remote Sensing Agr, Minist Agr & Rural Affairs, Beijing 100097, Peoples R ChinaYang, Guijun论文数: 0 引用数: 0 h-index: 0机构: Beijing Acad Agr & Forestry Sci, Informat Technol Res Ctr, Key Lab Quantitat Remote Sensing Agr, Minist Agr & Rural Affairs, Beijing 100097, Peoples R China Changan Univ, Sch Geol Engn & Surveying & Mapping, Xian 710054, Peoples R China Beijing Acad Agr & Forestry Sci, Informat Technol Res Ctr, Key Lab Quantitat Remote Sensing Agr, Minist Agr & Rural Affairs, Beijing 100097, Peoples R China
- [22] A Review of Remote Sensing for Environmental Monitoring in China[J]. REMOTE SENSING, 2020, 12 (07)Li, Jun论文数: 0 引用数: 0 h-index: 0机构: China Univ Min & Technol, Coll Geosci & Surveying Engn, Beijing 100083, Peoples R China China Univ Min & Technol, Coll Geosci & Surveying Engn, Beijing 100083, Peoples R ChinaPei, Yanqiu论文数: 0 引用数: 0 h-index: 0机构: China Univ Min & Technol, Coll Geosci & Surveying Engn, Beijing 100083, Peoples R China China Univ Min & Technol, Coll Geosci & Surveying Engn, Beijing 100083, Peoples R ChinaZhao, Shaohua论文数: 0 引用数: 0 h-index: 0机构: Minist Ecol, Beijing 100094, Peoples R China Environm Ctr Satellite Applicat Ecol & Environm, Beijing 100094, Peoples R China State Environm Protect Key Lab Satellite Remote S, Beijing 100094, Peoples R China China Univ Min & Technol, Coll Geosci & Surveying Engn, Beijing 100083, Peoples R ChinaXiao, Rulin论文数: 0 引用数: 0 h-index: 0机构: Minist Ecol, Beijing 100094, Peoples R China Environm Ctr Satellite Applicat Ecol & Environm, Beijing 100094, Peoples R China State Environm Protect Key Lab Satellite Remote S, Beijing 100094, Peoples R China China Univ Min & Technol, Coll Geosci & Surveying Engn, Beijing 100083, Peoples R ChinaSang, Xiao论文数: 0 引用数: 0 h-index: 0机构: China Univ Min & Technol, Coll Geosci & Surveying Engn, Beijing 100083, Peoples R China China Univ Min & Technol, Coll Geosci & Surveying Engn, Beijing 100083, Peoples R ChinaZhang, Chengye论文数: 0 引用数: 0 h-index: 0机构: China Univ Min & Technol, Coll Geosci & Surveying Engn, Beijing 100083, Peoples R China China Univ Min & Technol, Coll Geosci & Surveying Engn, Beijing 100083, Peoples R China
- [23] Landslide Detection Mapping Employing CNN, ResNet, and DenseNet in the Three Gorges Reservoir, China[J]. IEEE JOURNAL OF SELECTED TOPICS IN APPLIED EARTH OBSERVATIONS AND REMOTE SENSING, 2021, 14 : 11417 - 11428Liu, Tong论文数: 0 引用数: 0 h-index: 0机构: China Univ Geosci, Inst Geophys & Geomat, Wuhan 430074, Peoples R China China Univ Geosci, Inst Geophys & Geomat, Wuhan 430074, Peoples R ChinaChen, Tao论文数: 0 引用数: 0 h-index: 0机构: China Univ Geosci, Inst Geophys & Geomat, Wuhan 430074, Peoples R China Geomat Technol & Applicat Key Lab Qinghai Prov, Xining 810001, Peoples R China Beijing Key Lab Urban Spatial Informat Engn, Beijing 100038, Peoples R China China Univ Geosci, Inst Geophys & Geomat, Wuhan 430074, Peoples R ChinaNiu, Ruiqing论文数: 0 引用数: 0 h-index: 0机构: China Univ Geosci, Inst Geophys & Geomat, Wuhan 430074, Peoples R China China Univ Geosci, Inst Geophys & Geomat, Wuhan 430074, Peoples R ChinaPlaza, Antonio论文数: 0 引用数: 0 h-index: 0机构: Univ Extremadura, Escuela Politecn, Hyperspectral Comp Lab, Dept Technol Comp & Commun, Caceres 10071, Spain China Univ Geosci, Inst Geophys & Geomat, Wuhan 430074, Peoples R China
- [24] Super Resolution Generative Adversarial Network (SRGANs) for Wheat Stripe Rust Classification[J]. SENSORS, 2021, 21 (23)论文数: 引用数: h-index:机构:论文数: 引用数: h-index:机构:Haq, Ihsan Ul论文数: 0 引用数: 0 h-index: 0机构: Natl Univ Sci & Technol NUST, Sch Elect Engn & Comp Sci SEECS, Islamabad 44000, Pakistan Natl Univ Sci & Technol NUST, Sch Elect Engn & Comp Sci SEECS, Islamabad 44000, PakistanShafi, Uferah论文数: 0 引用数: 0 h-index: 0机构: Natl Univ Sci & Technol NUST, Sch Elect Engn & Comp Sci SEECS, Islamabad 44000, Pakistan Natl Univ Sci & Technol NUST, Sch Elect Engn & Comp Sci SEECS, Islamabad 44000, Pakistan论文数: 引用数: h-index:机构:论文数: 引用数: h-index:机构:
- [25] Prediction of NDVI using the Holt-Winters model in high and low vegetation regions: A case study of East Africa[J]. SCIENTIFIC AFRICAN, 2021, 14Omar, Mwana Said论文数: 0 引用数: 0 h-index: 0机构: Univ Hyogo, Grad Sch Appl Informat, Dept Policy & Management Informat, Chuo Ku, Computat Sci Bldg,7-1-28 Minatojima Minamimachi, Kobe, Hyogo, Japan Univ Hyogo, Grad Sch Appl Informat, Dept Policy & Management Informat, Chuo Ku, Computat Sci Bldg,7-1-28 Minatojima Minamimachi, Kobe, Hyogo, JapanKawamukai, Hajime论文数: 0 引用数: 0 h-index: 0机构: Univ Hyogo, Grad Sch Appl Informat, Dept Policy & Management Informat, Chuo Ku, Computat Sci Bldg,7-1-28 Minatojima Minamimachi, Kobe, Hyogo, Japan Univ Hyogo, Grad Sch Appl Informat, Dept Policy & Management Informat, Chuo Ku, Computat Sci Bldg,7-1-28 Minatojima Minamimachi, Kobe, Hyogo, Japan
- [26] The accuracy of PSNR in predicting video quality for different video scenes and frame rates[J]. TELECOMMUNICATION SYSTEMS, 2012, 49 (01) : 35 - 48Quan Huynh-Thu论文数: 0 引用数: 0 h-index: 0机构: Psytech Ltd, Ipswich IP1 1HN, Suffolk, England Psytech Ltd, Ipswich IP1 1HN, Suffolk, EnglandGhanbari, Mohammed论文数: 0 引用数: 0 h-index: 0机构: Univ Essex, Colchester CO4 3SQ, Essex, England Psytech Ltd, Ipswich IP1 1HN, Suffolk, England
- [27] Use of synthetic images for training a deep learning model for weed detection and biomass estimation in cotton[J]. SCIENTIFIC REPORTS, 2022, 12 (01)Sapkota, Bishwa B.论文数: 0 引用数: 0 h-index: 0机构: Texas A&M Univ, Dept Soil & Crop Sci, College Stn, TX 77843 USA Texas A&M Univ, Dept Soil & Crop Sci, College Stn, TX 77843 USAPopescu, Sorin论文数: 0 引用数: 0 h-index: 0机构: Texas A&M Univ, Dept Ecosyst Sci & Management, College Stn, TX 77843 USA Texas A&M Univ, Dept Soil & Crop Sci, College Stn, TX 77843 USARajan, Nithya论文数: 0 引用数: 0 h-index: 0机构: Texas A&M Univ, Dept Soil & Crop Sci, College Stn, TX 77843 USA Texas A&M Univ, Dept Soil & Crop Sci, College Stn, TX 77843 USALeon, Ramon G.论文数: 0 引用数: 0 h-index: 0机构: North Carolina State Univ, Dept Crop & Soil Sci, Raleigh, NC 27695 USA Texas A&M Univ, Dept Soil & Crop Sci, College Stn, TX 77843 USAReberg-Horton, Chris论文数: 0 引用数: 0 h-index: 0机构: North Carolina State Univ, Dept Crop & Soil Sci, Raleigh, NC 27695 USA Texas A&M Univ, Dept Soil & Crop Sci, College Stn, TX 77843 USAMirsky, Steven论文数: 0 引用数: 0 h-index: 0机构: USDA ARS, Sustainable Agr Syst Lab, Beltsville, MD 20705 USA Texas A&M Univ, Dept Soil & Crop Sci, College Stn, TX 77843 USABagavathiannan, Muthukumar, V论文数: 0 引用数: 0 h-index: 0机构: Texas A&M Univ, Dept Soil & Crop Sci, College Stn, TX 77843 USA Texas A&M Univ, Dept Soil & Crop Sci, College Stn, TX 77843 USA
- [28] Crop classification in South Korea for multitemporal PlanetScope imagery using SFC-DenseNet-AM[J]. INTERNATIONAL JOURNAL OF APPLIED EARTH OBSERVATION AND GEOINFORMATION, 2024, 126Seong, Seonkyeong论文数: 0 引用数: 0 h-index: 0机构: Korea Meteorol Adm, Satellite Planning Div, Natl Meteorol Satellite Ctr, Jincheon, South Korea Korea Meteorol Adm, Satellite Planning Div, Natl Meteorol Satellite Ctr, Jincheon, South KoreaChang, Anjin论文数: 0 引用数: 0 h-index: 0机构: Tennessee State Univ, Dept Agr & Environm Sci, Nashville, TN USA Korea Meteorol Adm, Satellite Planning Div, Natl Meteorol Satellite Ctr, Jincheon, South KoreaMo, Junsang论文数: 0 引用数: 0 h-index: 0机构: Natl Geog Informat Inst, Natl Land Satellite Ctr, Suwon, South Korea Korea Meteorol Adm, Satellite Planning Div, Natl Meteorol Satellite Ctr, Jincheon, South KoreaNa, Sangil论文数: 0 引用数: 0 h-index: 0机构: Natl Inst Agr Sci, Rural Dev Adm, Climate Change Assessment Div, Jeonju, Jeollabuk Do, South Korea Korea Meteorol Adm, Satellite Planning Div, Natl Meteorol Satellite Ctr, Jincheon, South KoreaAhn, Hoyong论文数: 0 引用数: 0 h-index: 0机构: Natl Inst Agr Sci, Rural Dev Adm, Climate Change Assessment Div, Jeonju, Jeollabuk Do, South Korea Korea Meteorol Adm, Satellite Planning Div, Natl Meteorol Satellite Ctr, Jincheon, South KoreaOh, Jaehong论文数: 0 引用数: 0 h-index: 0机构: Korea Maritime & Ocean Univ, Dept Civil Engn, Interdisciplinary Major Ocean Renewable Energy Eng, Busan, South Korea Korea Meteorol Adm, Satellite Planning Div, Natl Meteorol Satellite Ctr, Jincheon, South KoreaChoi, Jaewan论文数: 0 引用数: 0 h-index: 0机构: Chungbuk Natl Univ, Dept Civil Engn, Cheongju, South Korea Korea Meteorol Adm, Satellite Planning Div, Natl Meteorol Satellite Ctr, Jincheon, South Korea
- [29] Global estimates of evapotranspiration for climate studies using multi-sensor remote sensing data: Evaluation of three process-based approaches[J]. REMOTE SENSING OF ENVIRONMENT, 2011, 115 (03) : 801 - 823Vinukollu, Raghuveer K.论文数: 0 引用数: 0 h-index: 0机构: Princeton Univ, Dept Civil & Environm Engn, Princeton, NJ 08540 USA Princeton Univ, Dept Civil & Environm Engn, Princeton, NJ 08540 USAWood, Eric F.论文数: 0 引用数: 0 h-index: 0机构: Princeton Univ, Dept Civil & Environm Engn, Princeton, NJ 08540 USA Princeton Univ, Dept Civil & Environm Engn, Princeton, NJ 08540 USAFerguson, Craig R.论文数: 0 引用数: 0 h-index: 0机构: Princeton Univ, Dept Civil & Environm Engn, Princeton, NJ 08540 USA Princeton Univ, Dept Civil & Environm Engn, Princeton, NJ 08540 USAFisher, Joshua B.论文数: 0 引用数: 0 h-index: 0机构: CALTECH, Water & Carbon Cycles Grp, NASA, Jet Prop Lab, Pasadena, CA 91109 USA Princeton Univ, Dept Civil & Environm Engn, Princeton, NJ 08540 USA
- [30] The evolution of video quality measurement: From PSNR to hybrid metrics[J]. IEEE TRANSACTIONS ON BROADCASTING, 2008, 54 (03) : 660 - 668Winkler, Stefan论文数: 0 引用数: 0 h-index: 0机构: Symmetricom., San JoseMohandas, Praveen论文数: 0 引用数: 0 h-index: 0机构: Symmetricom., San Jose