Nanodroplet-Mediated Assembly of Platinum Nanoparticle Rings in Solution

被引:39
作者
Lin, Guanhua [1 ,2 ,3 ,4 ,5 ]
Zhu, Xi [6 ]
Anand, Utkarsh [1 ,2 ,3 ,4 ,5 ]
Liu, Qi [1 ,2 ,3 ,4 ,5 ]
Lu, Jingyu [1 ,2 ,3 ,4 ,5 ]
Aabdin, Zainul [1 ,2 ,3 ,4 ,5 ]
Su, Haibin [6 ]
Mirsaidov, Utkur [1 ,2 ,3 ,4 ,5 ]
机构
[1] Natl Univ Singapore, Dept Phys, 2 Sci Dr 3, Singapore 117551, Singapore
[2] Natl Univ Singapore, Ctr Adv Mat 2D, 6 Sci Dr 2, Singapore 117546, Singapore
[3] Natl Univ Singapore, Graphene Res Ctr, 6 Sci Dr 2, Singapore 117546, Singapore
[4] Natl Univ Singapore, Dept Biol Sci, Ctr BioImaging Sci, 14 Sci Dr 4, Singapore 117543, Singapore
[5] Natl Univ Singapore, NanoCore, 4 Engn Dr 3, Singapore 117576, Singapore
[6] Nanyang Technol Univ, Sch Mat Sci & Engn, Singapore 639798, Singapore
基金
新加坡国家研究基金会;
关键词
Self-assembly; nanoparticles; in situ TEM; nanodroplet; template-directed assembly; ELECTRON-MICROSCOPY; GROWTH; NANOCRYSTALS; SHAPE; DYNAMICS; SIZE;
D O I
10.1021/acs.nanolett.5b04323
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
Soft fluidlike nanoscale objects can drive nano particle assembly by serving as a scaffold for nanoparticle organization. The intermediate steps in these template-directed nanoscale assemblies are important but remain unresolved. We used real-time in situ transmission electron microscopy to follow the assembly dynamics of platinum nanoparticles into flexible ringlike chains around ethylenediaminetetraacetic acid nanodroplets dispersed in solution. In solution, these nanoring assemblies form via sequential attachment of the nanoparticles to binding sites located along the circumference of the nanodroplets, followed by the rearrangement and reorientation of the attached nanoparticles. Additionally, larger nanoparticle ring assemblies form via the coalescence of smaller ring assemblies. The intermediate steps of assembly reported here reveal how fluidlike nanotemplates drive nanoparticle organization, which can aid the future design of new nanomaterials.
引用
收藏
页码:1092 / 1096
页数:5
相关论文
共 42 条
[1]   Bonding Pathways of Gold Nanocrystals in Solution [J].
Aabdin, Zainul ;
Lu, Jingyu ;
Zhu, Xi ;
Anand, Utkarsh ;
Loh, N. Duane ;
Su, Haibin ;
Mirsaidov, Utkur .
NANO LETTERS, 2014, 14 (11) :6639-6643
[2]  
Alloyeau D, 2009, NAT MATER, V8, P940, DOI [10.1038/NMAT2574, 10.1038/nmat2574]
[3]  
Anderson G.K., 1995, Comprehensive Organometallic Chemistry II, V9, P431
[4]   Self-assembly of nanoparticles at interfaces [J].
Boeker, Alexander ;
He, Jinbo ;
Emrick, Todd ;
Russell, Thomas P. .
SOFT MATTER, 2007, 3 (10) :1231-1248
[5]   Predictive Self-Assembly of Polyhedra into Complex Structures [J].
Damasceno, Pablo F. ;
Engel, Michael ;
Glotzer, Sharon C. .
SCIENCE, 2012, 337 (6093) :453-457
[6]  
de Jonge N, 2011, NAT NANOTECHNOL, V6, P695, DOI [10.1038/NNANO.2011.161, 10.1038/nnano.2011.161]
[7]   Pattern formation in drying drops [J].
Deegan, RD .
PHYSICAL REVIEW E, 2000, 61 (01) :475-485
[8]   On the Synthesis of Au Nanoparticles Using EDTA as a Reducing Agent [J].
Dozol, Helene ;
Meriguet, Guillaume ;
Ancian, Bernard ;
Cabuil, Valerie ;
Xu, Haolan ;
Wang, Dayang ;
Abou-Hassan, Ali .
JOURNAL OF PHYSICAL CHEMISTRY C, 2013, 117 (40) :20958-20966
[9]   Organization of metallic nanoparticles using tobacco mosaic virus templates [J].
Dujardin, E ;
Peet, C ;
Stubbs, G ;
Culver, JN ;
Mann, S .
NANO LETTERS, 2003, 3 (03) :413-417
[10]   In situ liquid-cell electron microscopy of colloid aggregation and growth dynamics [J].
Grogan, Joseph M. ;
Rotkina, Lolita ;
Bau, Haim H. .
PHYSICAL REVIEW E, 2011, 83 (06)