A multi-omic single-cell landscape of cellular diversification in the developing human cerebral cortex

被引:1
|
作者
Tian, Yuhan [1 ]
Wu, Xia [1 ]
Luo, Songhao [2 ]
Xiong, Dan [1 ]
Liu, Rong [1 ]
Hu, Lanqi [1 ]
Yuan, Yuchen [1 ]
Shi, Guowei [1 ]
Yao, Junjie [1 ]
Huang, Zhiwei [2 ]
Fu, Fang [3 ]
Yang, Xin [3 ]
Tang, Zhonghui [1 ]
Zhang, Jiajun [2 ]
Hu, Kunhua [4 ,5 ]
机构
[1] Sun Yat sen Univ, Zhongshan Sch Med, Guangzhou 510275, Peoples R China
[2] Sun Yat Sen Univ, Sch Math, Guangzhou 510275, Peoples R China
[3] Guangzhou Med Univ, Guangzhou Women & Childrens Med Ctr, Guangzhou 511436, Peoples R China
[4] Sun Yat sen Univ, Zhongshan Sch Med, Guangdong Prov Key Lab Brain Funct & Dis, Guangzhou 510275, Peoples R China
[5] Sun Yat Sen Univ, Affiliated Hosp 3, Publ Platform Lab, Guangzhou 510630, Peoples R China
基金
中国国家自然科学基金;
关键词
Excitatory projection neuron; Single -cell multi-omics technique; Differentiation trajectory; Regulatory logic; PYRAMIDAL NEURONS; GENE; TRANSCRIPTION; EXPRESSION; SPECIFICATION; MIGRATION; CHROMATIN; FATE; NEUROGENESIS; PROGENITOR;
D O I
10.1016/j.csbj.2024.05.019
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
The vast neuronal diversity in the human neocortex is vital for high-order brain functions, necessitating elucidation of the regulatory mechanisms underlying such unparalleled diversity. However, recent studies have yet to comprehensively reveal the diversity of neurons and the molecular logic of neocortical origin in humans at single-cell resolution through profiling transcriptomic or epigenomic landscapes, owing to the application of unimodal data alone to depict exceedingly heterogeneous populations of neurons. In this study, we generated a comprehensive compendium of the developing human neocortex by simultaneously profiling gene expression and open chromatin from the same cell. We computationally reconstructed the differentiation trajectories of excitatory projection neurons of cortical origin and inferred the regulatory logic governing lineage bifurcation decisions for neuronal diversification. We demonstrated that neuronal diversity arises from progenitor cell lineage specificity and postmitotic differentiation at distinct stages. Our data paves the way for understanding the primarily coordinated regulatory logic for neuronal diversification in the neocortex.
引用
收藏
页码:2173 / 2189
页数:17
相关论文
共 50 条
  • [1] Multi-omic profiling of the developing human cerebral cortex at the single-cell level
    Zhu, Kaiyi
    Bendl, Jaroslav
    Rahman, Samir
    Vicari, James M.
    Coleman, Claire
    Clarence, Tereza
    Latouche, Ovaun
    Tsankova, Nadejda M.
    Li, Aiqun
    Brennand, Kristen J.
    Lee, Donghoon
    Yuan, Guo-Cheng
    Fullard, John F.
    Roussos, Panos
    SCIENCE ADVANCES, 2023, 9 (41)
  • [2] A multi-omic single-cell landscape of human gynecologic malignancies
    Regner, Matthew J.
    Wisniewska, Kamila
    Garcia-Recio, Susana
    Thennavan, Aatish
    Mendez-Giraldez, Raul
    Malladi, Venkat S.
    Hawkins, Gabrielle
    Parker, Joel S.
    Perou, Charles M.
    Bae-Jump, Victoria L.
    Franco, Hector L.
    MOLECULAR CELL, 2021, 81 (23) : 4924 - +
  • [3] A multi-omic single-cell landscape of the aging mouse ovary
    Zhang, Jian
    Jia, Shunze
    Zheng, Zehua
    Cao, Lanrui
    Zhou, Jingyi
    Fu, Xudong
    GEROSCIENCE, 2025,
  • [4] SPATIOTEMPORAL MULTI-OMIC LANDSCAPE OF HUMAN MEDULLOBLASTOMA AT SINGLE CELL RESOLUTION
    Liu, Hailong
    Qiu, Xiaoguang
    Jiang, Tao
    NEURO-ONCOLOGY, 2021, 23 : 213 - 214
  • [5] An Integrated Multi-omic Single-Cell Atlas of Human B Cell Identity
    Glass, David R.
    Tsai, Albert G.
    Oliveria, John Paul
    Hartmann, Felix J.
    Kimmey, Samuel C.
    Calderon, Ariel A.
    Borges, Luciene
    Glass, Marla C.
    Wagar, Lisa E.
    Davis, Mark M.
    Bendall, Sean C.
    IMMUNITY, 2020, 53 (01) : 217 - +
  • [6] Single-cell multi-omic profiling and clonal tracing of the human gynecological tumor microenvironment
    Liu, Vincent
    Sandor, Katalin
    Daniel, Bence
    Berthoin, Lionel
    Sabri, Shan
    Panagiotopoulou, Sofia
    Yin, Yajie
    Hiam-Galvez, Kamir
    Sit, Rene
    Fan, Zi
    Galvin, Brendan
    Khan, Omar
    Bezman, Natalie
    Grogan, Jane
    Howitt, Brooke
    Zheng, Grace
    Lareau, Caleb
    Satpathy, Ansuman
    CANCER RESEARCH, 2022, 82 (12)
  • [7] Joint probabilistic modeling of single-cell multi-omic data with totalVI
    Gayoso, Adam
    Steier, Zoe
    Lopez, Romain
    Regier, Jeffrey
    Nazor, Kristopher L.
    Streets, Aaron
    Yosef, Nir
    NATURE METHODS, 2021, 18 (03) : 272 - +
  • [8] Iterative single-cell multi-omic integration using online learning
    Chao Gao
    Jialin Liu
    April R. Kriebel
    Sebastian Preissl
    Chongyuan Luo
    Rosa Castanon
    Justin Sandoval
    Angeline Rivkin
    Joseph R. Nery
    Margarita M. Behrens
    Joseph R. Ecker
    Bing Ren
    Joshua D. Welch
    Nature Biotechnology, 2021, 39 : 1000 - 1007
  • [9] Iterative single-cell multi-omic integration using online learning
    Gao, Chao
    Liu, Jialin
    Kriebel, April R.
    Preissl, Sebastian
    Luo, Chongyuan
    Castanon, Rosa
    Sandoval, Justin
    Rivkin, Angeline
    Nery, Joseph R.
    Behrens, Margarita M.
    Ecker, Joseph R.
    Ren, Bing
    Welch, Joshua D.
    NATURE BIOTECHNOLOGY, 2021, 39 (08) : 1000 - +
  • [10] MOSCATO: a supervised approach for analyzing multi-Omic single-Cell data
    Towle-Miller, Lorin M.
    Miecznikowski, Jeffrey C.
    BMC GENOMICS, 2022, 23 (01)