Clustering Longitudinal Data: A Review of Methods and Software Packages

被引:1
作者
Lu, Zihang [1 ,2 ]
机构
[1] Queens Univ, Dept Publ Hlth Sci, Kingston, ON, Canada
[2] Queens Univ, Dept Math & Stat, Kingston, ON, Canada
基金
加拿大自然科学与工程研究理事会;
关键词
cluster analysis; longitudinal data; model-based clustering; algorithm-based clustering; functional clustering; FUNCTIONAL DATA-ANALYSIS; LATENT CLASS ANALYSIS; MIXTURE-MODELS; K-MEANS; R PACKAGE; BAYESIAN-INFERENCE; CROSS-VALIDATION; UNKNOWN NUMBER; MIXED MODELS; MISSING DATA;
D O I
10.1111/insr.12588
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
Clustering of longitudinal data is becoming increasingly popular in many fields such as social sciences, business, environmental science, medicine and healthcare. However, it is often challenging due to the complex nature of the data, such as dependencies between observations collected over time, missingness, sparsity and non-linearity, making it difficult to identify meaningful patterns and relationships among the data. Despite the increasingly common application of cluster analysis for longitudinal data, many existing methods are still less known to researchers, and limited guidance is provided in choosing between methods and software packages. In this paper, we review several commonly used methods for clustering longitudinal data. These methods are broadly classified into three categories, namely, model-based approaches, algorithm-based approaches and functional clustering approaches. We perform a comparison among these methods and their corresponding R software packages using real-life datasets and simulated datasets under various conditions. Findings from the analyses and recommendations for using these approaches in practice are discussed.
引用
收藏
页数:34
相关论文
共 50 条
[21]   A systematic review of exploratory factor analysis packages in R software [J].
Govindasamy, Priyalatha ;
Isa, Nor Junainah Mohd ;
Mohamed, Nor Firdous ;
Noor, Amelia Mohd ;
Ma, Lin ;
Olmos, Antonio ;
Green, Kathy .
WILEY INTERDISCIPLINARY REVIEWS-COMPUTATIONAL STATISTICS, 2024, 16 (01)
[22]   A review of robust clustering methods [J].
Luis Angel García-Escudero ;
Alfonso Gordaliza ;
Carlos Matrán ;
Agustín Mayo-Iscar .
Advances in Data Analysis and Classification, 2010, 4 :89-109
[23]   A review of robust clustering methods [J].
Angel Garcia-Escudero, Luis ;
Gordaliza, Alfonso ;
Matran, Carlos ;
Mayo-Iscar, Agustin .
ADVANCES IN DATA ANALYSIS AND CLASSIFICATION, 2010, 4 (2-3) :89-109
[24]   Clustering functional data via variational inference [J].
Xian, Chengqian ;
de Souza, Camila P. E. ;
Jewell, John ;
Dias, Ronaldo .
ADVANCES IN DATA ANALYSIS AND CLASSIFICATION, 2024,
[25]   Machine and deep learning for longitudinal biomedical data: a review of methods and applications [J].
Cascarano, Anna ;
Mur-Petit, Jordi ;
Hernandez-Gonzalez, Jeronimo ;
Camacho, Marina ;
Eadie, Nina de Toro ;
Gkontra, Polyxeni ;
Chadeau-Hyam, Marc ;
Vitria, Jordi ;
Lekadir, Karim .
ARTIFICIAL INTELLIGENCE REVIEW, 2023, 56 (SUPPL 2) :1711-1771
[26]   Machine and deep learning for longitudinal biomedical data: a review of methods and applications [J].
Anna Cascarano ;
Jordi Mur-Petit ;
Jerónimo Hernández-González ;
Marina Camacho ;
Nina de Toro Eadie ;
Polyxeni Gkontra ;
Marc Chadeau-Hyam ;
Jordi Vitrià ;
Karim Lekadir .
Artificial Intelligence Review, 2023, 56 :1711-1771
[27]   Clustering of High Dimensional Longitudinal Imaging Data [J].
Lee, Seonjoo ;
Zipunnikov, Vadim ;
Shiee, Navid ;
Crainiceanu, Ciprian ;
Caffo, Brian S. ;
Pham, Dzung L. .
2013 3RD INTERNATIONAL WORKSHOP ON PATTERN RECOGNITION IN NEUROIMAGING (PRNI 2013), 2013, :33-36
[28]   A New Distance in Pattern Clustering on Longitudinal Data [J].
Liu, Yi ;
Luo, Nian-long .
2014 INTERNATIONAL CONFERENCE ON INFORMATION SCIENCE, ELECTRONICS AND ELECTRICAL ENGINEERING (ISEEE), VOLS 1-3, 2014, :971-975
[29]   Model-based clustering for longitudinal data [J].
De la Cruz-Mesia, Rolando ;
Quintanab, Fernando A. ;
Marshall, Guillermo .
COMPUTATIONAL STATISTICS & DATA ANALYSIS, 2008, 52 (03) :1441-1457
[30]   Bayesian consensus clustering for multivariate longitudinal data [J].
Lu, Zihang ;
Lou, Wendy .
STATISTICS IN MEDICINE, 2022, 41 (01) :108-127