Frequency-Separated Attention Network for Image Super-Resolution

被引:1
|
作者
Qu, Daokuan [1 ,2 ]
Li, Liulian [3 ]
Yao, Rui [3 ]
机构
[1] China Univ Min & Technol, Sch Informat & Control Engn, Xuzhou 221116, Peoples R China
[2] Shandong Polytech Coll, Sch Energy & Mat Engn, Jining 272067, Peoples R China
[3] China Univ Min & Technol, Sch Comp Sci & Technol, Xuzhou 221116, Peoples R China
来源
APPLIED SCIENCES-BASEL | 2024年 / 14卷 / 10期
关键词
densely connected structure; frequency-separated; channel-wise and spatial attention; image super-resolution;
D O I
10.3390/app14104238
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
The use of deep convolutional neural networks has significantly improved the performance of super-resolution. Employing deeper networks to enhance the non-linear mapping capability from low-resolution (LR) to high-resolution (HR) images has inadvertently weakened the information flow and disrupted long-term memory. Moreover, overly deep networks are challenging to train, thus failing to exhibit the expressive capability commensurate with their depth. High-frequency and low-frequency features in images play different roles in image super-resolution. Networks based on CNNs, which should focus more on high-frequency features, treat these two types of features equally. This results in redundant computations when processing low-frequency features and causes complex and detailed parts of the reconstructed images to appear as smooth as the background. To maintain long-term memory and focus more on the restoration of image details in networks with strong representational capabilities, we propose the Frequency-Separated Attention Network (FSANet), where dense connections ensure the full utilization of multi-level features. In the Feature Extraction Module (FEM), the use of the Res ASPP Module expands the network's receptive field without increasing its depth. To differentiate between high-frequency and low-frequency features within the network, we introduce the Feature-Separated Attention Block (FSAB). Furthermore, to enhance the quality of the restored images using heuristic features, we incorporate attention mechanisms into the Low-Frequency Attention Block (LFAB) and the High-Frequency Attention Block (HFAB) for processing low-frequency and high-frequency features, respectively. The proposed network outperforms the current state-of-the-art methods in tests on benchmark datasets.
引用
收藏
页数:19
相关论文
共 50 条
  • [41] Image super-resolution network based on a multi-branch attention mechanism
    Xin Yang
    Yingqing Guo
    Zhiqiang Li
    Dake Zhou
    Signal, Image and Video Processing, 2021, 15 : 1397 - 1405
  • [42] Image Super-Resolution With Unified-Window Attention
    Cho, Gunhee
    Choi, Yong Suk
    IEEE ACCESS, 2024, 12 : 30852 - 30866
  • [43] Efficient Dual Attention Transformer for Image Super-Resolution
    Park, Soobin
    Jeong, Yuna
    Choi, Yong Suk
    39TH ANNUAL ACM SYMPOSIUM ON APPLIED COMPUTING, SAC 2024, 2024, : 963 - 970
  • [44] Enhanced Attention-Based Back Projection Network for Image Super-Resolution in Sensor Network
    Chen, Zhikui
    Zhang, Siyuan
    Zhao, Liang
    IEEE SENSORS JOURNAL, 2021, 21 (22) : 25083 - 25089
  • [45] Image super-resolution via dynamic network
    Tian, Chunwei
    Zhang, Xuanyu
    Zhang, Qi
    Yang, Mingming
    Ju, Zhaojie
    CAAI TRANSACTIONS ON INTELLIGENCE TECHNOLOGY, 2024, 9 (04) : 837 - 849
  • [46] Difference Value Network for Image Super-Resolution
    Jiang, Zetao
    Pi, Kui
    Huang, Yongsong
    Qian, Yi
    Zhang, Shaoqin
    IEEE SIGNAL PROCESSING LETTERS, 2021, 28 : 1070 - 1074
  • [47] An Efficient Frequency Domain Separation Network for Paired and Unpaired Image Super-Resolution
    Liu, Huan
    Shao, Mingwen
    Qiao, Yuanjian
    Liu, Fukang
    2023 INTERNATIONAL JOINT CONFERENCE ON NEURAL NETWORKS, IJCNN, 2023,
  • [48] A Face Structure Attention Network for Face Super-Resolution
    Li, Chengjie
    Xiao, Nanfeng
    2022 26TH INTERNATIONAL CONFERENCE ON PATTERN RECOGNITION (ICPR), 2022, : 75 - 81
  • [49] RESIDUAL ATTENTION NETWORK FOR WAVELET DOMAIN SUPER-RESOLUTION
    Liu, Jing
    Xie, Yuan
    Song, Haichuan
    Yuan, Wang
    Ma, Lizhuang
    2020 IEEE INTERNATIONAL CONFERENCE ON ACOUSTICS, SPEECH, AND SIGNAL PROCESSING, 2020, : 2033 - 2037
  • [50] Balanced Spatial Feature Distillation and Pyramid Attention Network for Lightweight Image Super-resolution
    Gendy, Garas
    Sabor, Nabil
    Hou, Jingchao
    He, Guanghui
    NEUROCOMPUTING, 2022, 509 (157-166) : 157 - 166