Research on Ultra-High Sensitivity Fiber-Optic Cascaded Fabry-Perot Resonator Optical Sensor Based on the Comb-Spectrum Vernier Effect

被引:2
作者
Wei, Tao [1 ,2 ]
Zhang, Yanqing [1 ,2 ]
Zhang, Liqiang [1 ,2 ]
Tian, Zhen [1 ,2 ]
Nie, Zhaogang [1 ,2 ]
Yao, Yicun [1 ,2 ]
Wang, Minghong [1 ,2 ]
机构
[1] Liaocheng Univ, Shandong Kay Lab Opt Commun Sci & Technol, Liaocheng 252059, Peoples R China
[2] Liaocheng Univ, Sch Phys Sci & Informat Technol, Liaocheng 252059, Peoples R China
关键词
Optical fiber sensors; Interferometers; Interference; Optical interferometry; Sensors; Optical fibers; Ultrafast optics; Fabry-perot interferometer; femtosecond laser; fiber optic sensors; vernier effect; STRAIN;
D O I
10.1109/JLT.2024.3404783
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
The fiber-optic cascaded Fabry-Perot (FP) cavity structure is a significant interferometric sensor configuration, offering superior spectral resolution compared to Mach-Zehnder type sensors. In response to the comb-spectrum characteristics of fiber-optic cascaded FP sensors, we propose a novel optical vernier processing method. This method calculates the peak positions of individual resonance peaks without the need to track the drift of envelope modulation curve peaks, as required by traditional optical vernier scale methods. Utilizing this approach, we have significantly enhanced the sensitivity of cascaded FP cavity sensors. The strain and temperature sensing tests achieved sensitivities of 4.76 pm/mu & varepsilon; and 271.61 pm/degrees C, respectively, representing an increase of over 20 times compared to a single-stage cascaded FP cavity. More importantly, the Figure of Merit (FOM) for the cascaded FP cavity sensors can be improved by more than two orders of magnitude under the same sensitivity amplification factor, compared to traditional optical vernier technologies based on envelope curve recognition. This also effectively avoids potential errors that may arise during the fitting process of the envelope modulation curve. These advantages endow the cascaded FP cavity sensors with significant potential for application in the field of high-performance fiber-optic sensing.
引用
收藏
页码:6182 / 6187
页数:6
相关论文
共 50 条
  • [31] A High-Sensitivity Fiber-Optic Fabry-Perot Gas Pressure Sensor With Epoxy Resin Adhesive
    Xu, Danping
    Gao, Haitao
    Hou, Zheyu
    Zhang, Yanan
    Tong, Xuanxiang
    Zhang, Yizhuo
    Zhang, Pengyu
    Shen, Jian
    Li, Chaoyang
    [J]. IEEE SENSORS JOURNAL, 2022, 22 (11) : 10551 - 10558
  • [32] Optical fiber humidity sensor based on vernier effect of Fabry-Perot interferometers with microsphere
    Liu, Yiting
    Gong, Huaping
    Lu, Xiao
    Ni, Kai
    Zhao, Chunliu
    Shen, Changyu
    [J]. OPTICAL FIBER TECHNOLOGY, 2023, 76
  • [33] Relative humidity sensor based on cascaded Fabry-Perot interferometers and Vernier effect
    Wang, Yuan
    Zhu, Xiping
    Chen, Hailin
    Jiang, Chao
    Guo, Xiaoshan
    Sun, Simei
    [J]. OPTIK, 2022, 254
  • [34] High-Sensitivity Fiber-Optic Strain Sensor Based on the Vernier Effect and Separated FabryPerot Interferometers
    Tian, Jiajun
    Li, Zhigang
    Sun, Yunxu
    Yao, Yong
    [J]. JOURNAL OF LIGHTWAVE TECHNOLOGY, 2019, 37 (21) : 5609 - 5618
  • [35] Optical Vernier Effect in Fabry-Perot Interferometers Based on Ultra-Short Fiber Bragg Gratings
    Pereira, Luis
    Varum, Humberto
    Antunes, Paulo
    [J]. IEEE PHOTONICS TECHNOLOGY LETTERS, 2024, 36 (04) : 254 - 257
  • [36] Fiber-optic angle sensor based on an extrinsic Fabry-Perot cavity
    Lu, Tao
    Li, Zhengjia
    Du, Qiujiao
    Bi, Jie
    [J]. SENSORS AND ACTUATORS A-PHYSICAL, 2008, 148 (01) : 83 - 87
  • [37] A compact hydrogen sensor based on the fiber-optic Fabry-Perot interferometer
    Zhou, Xinlei
    Ma, Fengxiang
    Ling, Haitao
    Yu, Binjun
    Peng, Wei
    Yu, Qingxu
    [J]. OPTICS AND LASER TECHNOLOGY, 2020, 124
  • [38] Pressure sensor based on the fiber-optic extrinsic fabry-perot interferometer
    Yu Q.
    Zhou X.
    [J]. Photonic Sensors, 2011, 1 (1) : 72 - 83
  • [39] High-Temperature and High-Pressure Fiber Microsphere Fabry-Perot Sensor Based on Vernier Effect and FBG
    Yan, Zhengqiang
    Zhu, Shanshan
    Zhang, Yanjun
    Jia, Pinggang
    Liu, Jia
    Liu, Lei
    Zhu, Fengtong
    Niu, Huiqing
    An, Guowen
    [J]. IEEE SENSORS JOURNAL, 2023, 23 (09) : 9301 - 9307
  • [40] High Sensitivity Fiber Gas Pressure Sensor with Two Separated Fabry-Perot Interferometers Based on the Vernier Effect
    Song, Xiaokang
    Hou, Liangtao
    Wei, Xiangyu
    Su, Hang
    Li, Chang
    Li, Yan
    Ran, Lingling
    [J]. PHOTONICS, 2022, 9 (01)