Ionic conductivity and hydrogen permeability of microporous polysulfone membranes grafted by acrylic acid

被引:1
作者
Kutka, Martin [1 ]
Stano, Lubomir [2 ]
Kovacik, Dusan [1 ]
Satrapinskyy, Leonid [2 ]
Stano, Michal [1 ]
机构
[1] Comenius Univ, Fac Math Phys & Informat, Dept Expt Phys, Mlynska Dolina F1, Bratislava 84248, Slovakia
[2] Comenius Univ, Fac Math Phys & Informat, Ctr Nanotechnol & Adv Mat, Mlynska Dolina F1, Bratislava 84248, Slovakia
关键词
Alkaline water electrolysis; Separator; Plasma-initiated graft polymerization; Hydrogen crossover; Durability; ALKALINE WATER ELECTROLYSIS; FILLING POLYMERIZATION; BATTERY; DIAPHRAGMS; PEM; MECHANISMS; SEPARATORS; STABILITY; DISCHARGE;
D O I
10.1016/j.ijhydene.2024.08.156
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Energy losses and purity of product gases in alkaline water electrolysis strongly depend on properties of a separator positioned between the electrodes. This paper reports on heterogeneous separators based on microporous polysulfone membranes modified by graft co-polymerization of acrylic acid. After neutralization with KOH, the pores of the modified membranes were filled with potassium polyacrylate, a superabsorbent material forming hydrogel upon intake of an aqueous electrolyte. Under electrolysis conditions of 50 degrees C and atmospheric pressure, increasing amount of hydrogel in pores suppresses hydrogen permeability without apparent reduction of ionic conductivity. We have identified the product of ionic resistance and hydrogen flux as a suitable parameter to compare performance of separators of various thickness. In terms of this parameter, present separators surpass the performance of ZirfonTM Perl UTP 500 tested under the identical conditions. Ex-situ aging test in 30 wt% KOH at 60 degrees C has revealed preservation of high wettability for up to 1340 h.
引用
收藏
页码:224 / 234
页数:11
相关论文
共 65 条
[1]  
Agfa-Gevaert NV, 2021, Technical datasheet Zirfon UTP 220
[2]   Electrode Separators for the Next-Generation Alkaline Water Electrolyzers [J].
Aili, David ;
Kraglund, Mikkel Rykaer ;
Rajappan, Sinu C. ;
Serhiichuk, Dmytro ;
Xia, Yifan ;
Deimede, Valadoula ;
Kallitsis, Joannis ;
Bae, Chulsung ;
Jannasch, Patric ;
Henkensmeier, Dirk ;
Jensen, Jens Oluf .
ACS ENERGY LETTERS, 2023, 8 (04) :1900-1910
[3]   Porous poly(perfluorosulfonic acid) membranes for alkaline water electrolysis [J].
Aili, David ;
Hansen, Martin Kalmar ;
Andreasen, Jens Wenzel ;
Zhang, Jingdong ;
Jensen, Jens Oluf ;
Bjerrum, Niels J. ;
Li, Qingfeng .
JOURNAL OF MEMBRANE SCIENCE, 2015, 493 :589-598
[4]   Impact of an electrode-diaphragm gap on diffusive hydrogen crossover in alkaline water electrolysis [J].
Barros, Rodrigo Lira Garcia ;
Kraakman, Joost T. ;
Sebregts, Carlijn ;
van der Schaaf, John ;
de Groot, Matheus T. .
INTERNATIONAL JOURNAL OF HYDROGEN ENERGY, 2024, 49 :886-896
[5]   A Stencil Printed, High Energy Density Silver Oxide Battery Using a Novel Photopolymerizable Poly(acrylic acid) Separator [J].
Braam, Kyle ;
Subramanian, Vivek .
ADVANCED MATERIALS, 2015, 27 (04) :689-694
[6]   Evaluation of Diaphragms and Membranes as Separators for Alkaline Water Electrolysis [J].
Brauns, Joern ;
Schoenebeck, Jonas ;
Kraglund, Mikkel Rykaer ;
Aili, David ;
Hnat, Jaromir ;
Zitka, Jan ;
Mues, Willem ;
Jensen, Jens Oluf ;
Bouzek, Karel ;
Turek, Thomas .
JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 2021, 168 (01)
[7]   Composite membranes for alkaline electrolysis based on polysulfone and mineral fillers [J].
Burnat, Dariusz ;
Schlupp, Meike ;
Wichser, Adrian ;
Lothenbach, Barbara ;
Gorbar, Michal ;
Zuettel, Andreas ;
Vogt, Ulrich F. .
JOURNAL OF POWER SOURCES, 2015, 291 :163-172
[8]   A comprehensive review on PEM water electrolysis [J].
Carmo, Marcelo ;
Fritz, David L. ;
Merge, Juergen ;
Stolten, Detlef .
INTERNATIONAL JOURNAL OF HYDROGEN ENERGY, 2013, 38 (12) :4901-4934
[9]   Diffuse Coplanar Surface Barrier Discharge and its applications for in-line processing of low-added-value materials [J].
Cernak, M. ;
Cernakova, L. ;
Hudec, I. ;
Kovacik, D. ;
Zahoranova, A. .
EUROPEAN PHYSICAL JOURNAL-APPLIED PHYSICS, 2009, 47 (02)
[10]   Surface modification of polypropylene non-woven fabrics by atmospheric-pressure plasma activation followed by acrylic acid grafting [J].
Cernáková, L ;
Kovácik, D ;
Zahoranová, A ;
Cernák, M ;
Mazúr, M .
PLASMA CHEMISTRY AND PLASMA PROCESSING, 2005, 25 (04) :427-437