Modelling forest fire dynamics using conditional variational autoencoders

被引:0
|
作者
Ribeiro, Tiago Filipe Rodrigues [1 ]
de Silva, Fernando Jose Mateus da [1 ]
Costa, Rogerio Luis de Carvalho [1 ]
机构
[1] Polytech Inst Leiria, Comp Sci & Commun Res Ctr CI, ESTG, Bldg C-Campus 2,Morro Lena Alto Vieiro, P-2411901 Leiria, Portugal
关键词
Spatiotemporal data; Deep learning; Region interpolation; Conditional variational autoencoders; Forecasting; OBJECTS;
D O I
10.1007/s10796-024-10507-9
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Forest fires have far-reaching consequences, threatening human life, economic stability, and the environment. Understanding the dynamics of forest fires is crucial, especially in high-incidence regions. In this work, we apply deep networks to simulate the spatiotemporal progression of the area burnt in a forest fire. We tackle the region interpolation problem challenge by using a Conditional Variational Autoencoder (CVAE) model and generate in-between representations on the evolution of the burnt area. We also apply a CVAE model to forecast the progression of fire propagation, estimating the burnt area at distinct horizons and propagation stages. We evaluate our approach against other established techniques using real-world data. The results demonstrate that our method is competitive in geometric similarity metrics and exhibits superior temporal consistency for in-between representation generation. In the context of burnt area forecasting, our approach achieves scores of 90% for similarity and 99% for temporal consistency. These findings suggest that CVAE models may be a viable alternative for modeling the spatiotemporal evolution of 2D moving regions of forest fire evolution.
引用
收藏
页数:20
相关论文
共 50 条
  • [41] Integrated Multi-omics Analysis Using Variational Autoencoders: Application to Pan-cancer Classification
    Zhang, Xiaoyu
    Zhang, Jingqing
    Sun, Kai
    Yang, Xian
    Dai, Chengliang
    Guo, Yike
    2019 IEEE INTERNATIONAL CONFERENCE ON BIOINFORMATICS AND BIOMEDICINE (BIBM), 2019, : 765 - 769
  • [42] Electromagnetic Field Reconstruction and Source Identification Using Conditional Variational Autoencoder and CNN
    Barmada, Sami
    Barba, Paolo Di
    Fontana, Nunzia
    Mognaschi, Maria Evelina
    Tucci, Mauro
    IEEE JOURNAL ON MULTISCALE AND MULTIPHYSICS COMPUTATIONAL TECHNIQUES, 2023, 8 : 322 - 331
  • [43] Causal Probabilistic Based Variational Autoencoders Capable of Handling Noisy Inputs Using Fuzzy Logic Rules
    Faghihi, Usef
    Kalantarpour, Cyrus
    Saki, Amir
    INTELLIGENT COMPUTING, VOL 2, 2022, 507 : 190 - 202
  • [44] Community Detection Using Deep Learning: Combining Variational Graph Autoencoders with Leiden and K-Truss Techniques
    Patil, Jyotika Hariom
    Potikas, Petros
    Andreopoulos, William B.
    Potika, Katerina
    INFORMATION, 2024, 15 (09)
  • [45] Joint Source-Channel Coding Over Additive Noise Analog Channels Using Mixture of Variational Autoencoders
    Saidutta, Yashas Malur
    Abdi, Afshin
    Fekri, Faramarz
    IEEE JOURNAL ON SELECTED AREAS IN COMMUNICATIONS, 2021, 39 (07) : 2000 - 2013
  • [46] Data Augmentation for Electricity Theft Detection Using Conditional Variational Auto-Encoder
    Gong, Xuejiao
    Tang, Bo
    Zhu, Ruijin
    Liao, Wenlong
    Song, Like
    ENERGIES, 2020, 13 (17)
  • [47] Adaptive Augmentation of Medical Data Using Independently Conditional Variational Auto-Encoders
    Pesteie, Mehran
    Abolmaesumi, Purang
    Rohling, Robert N.
    IEEE TRANSACTIONS ON MEDICAL IMAGING, 2019, 38 (12) : 2807 - 2820
  • [48] Probabilistic Individual Short-Term Load Forecasting Using Conditional Variational Autoencoder
    Khazeiynasab, Seyyed Rashid
    Iyengar, Rajagopal
    Leow, Woei Ling
    2023 IEEE POWER & ENERGY SOCIETY GENERAL MEETING, PESGM, 2023,
  • [49] An enhanced deep learning-based phishing detection mechanism to effectively identify malicious URLs using variational autoencoders
    Prabakaran, Manoj Kumar
    Chandrasekar, Abinaya Devi
    Meenakshi Sundaram, Parvathy
    IET INFORMATION SECURITY, 2023, 17 (03) : 423 - 440
  • [50] Intelligent Methods for Forest Fire Detection Using Unmanned Aerial Vehicles
    Abramov, Nikolay
    Emelyanova, Yulia
    Fralenko, Vitaly
    Khachumov, Vyacheslav
    Khachumov, Mikhail
    Shustova, Maria
    Talalaev, Alexander
    FIRE-SWITZERLAND, 2024, 7 (03):