Modelling forest fire dynamics using conditional variational autoencoders

被引:0
|
作者
Ribeiro, Tiago Filipe Rodrigues [1 ]
de Silva, Fernando Jose Mateus da [1 ]
Costa, Rogerio Luis de Carvalho [1 ]
机构
[1] Polytech Inst Leiria, Comp Sci & Commun Res Ctr CI, ESTG, Bldg C-Campus 2,Morro Lena Alto Vieiro, P-2411901 Leiria, Portugal
关键词
Spatiotemporal data; Deep learning; Region interpolation; Conditional variational autoencoders; Forecasting; OBJECTS;
D O I
10.1007/s10796-024-10507-9
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Forest fires have far-reaching consequences, threatening human life, economic stability, and the environment. Understanding the dynamics of forest fires is crucial, especially in high-incidence regions. In this work, we apply deep networks to simulate the spatiotemporal progression of the area burnt in a forest fire. We tackle the region interpolation problem challenge by using a Conditional Variational Autoencoder (CVAE) model and generate in-between representations on the evolution of the burnt area. We also apply a CVAE model to forecast the progression of fire propagation, estimating the burnt area at distinct horizons and propagation stages. We evaluate our approach against other established techniques using real-world data. The results demonstrate that our method is competitive in geometric similarity metrics and exhibits superior temporal consistency for in-between representation generation. In the context of burnt area forecasting, our approach achieves scores of 90% for similarity and 99% for temporal consistency. These findings suggest that CVAE models may be a viable alternative for modeling the spatiotemporal evolution of 2D moving regions of forest fire evolution.
引用
收藏
页数:20
相关论文
共 50 条
  • [31] Demonstrating MoveAE: Modifying Affective Robot Movements Using Classifying Variational Autoencoders
    Suguitan, Michael
    Gomez, Randy
    Hoffman, Guy
    HRI'20: COMPANION OF THE 2020 ACM/IEEE INTERNATIONAL CONFERENCE ON HUMAN-ROBOT INTERACTION, 2020, : 78 - 78
  • [32] FaceVAE: Generation of a 3D Geometric Object Using Variational Autoencoders
    Park, Sungsoo
    Kim, Hyeoncheol
    ELECTRONICS, 2021, 10 (22)
  • [33] Brain Tumor Classification Using a Combination of Variational Autoencoders and Generative Adversarial Networks
    Ahmad, Bilal
    Sun, Jun
    You, Qi
    Palade, Vasile
    Mao, Zhongjie
    BIOMEDICINES, 2022, 10 (02)
  • [34] Visualization of Optic Nerve Structural Patterns in Papilledema Using Deep Learning Variational Autoencoders
    Wang, Jui-Kai
    Linton, Edward F.
    Johnson, Brett A.
    Kupersmith, Mark J.
    Garvin, Mona K.
    Kardon, Randy H.
    TRANSLATIONAL VISION SCIENCE & TECHNOLOGY, 2024, 13 (01):
  • [35] TRANSFER LEARNING FROM SYNTHETIC TO REAL IMAGES USING VARIATIONAL AUTOENCODERS FOR PRECISE POSITION DETECTION
    Inoue, Tadanobu
    Chaudhury, Subhajit
    De Magistris, Giovanni
    Dasgupta, Sakyasingha
    2018 25TH IEEE INTERNATIONAL CONFERENCE ON IMAGE PROCESSING (ICIP), 2018, : 2725 - 2729
  • [36] Drug-Target Binding Affinity Prediction in a Continuous Latent Space Using Variational Autoencoders
    Zhao, Lingling
    Zhu, Yan
    Wen, Naifeng
    Wang, Chunyu
    Wang, Junjie
    Yuan, Yongfeng
    IEEE-ACM TRANSACTIONS ON COMPUTATIONAL BIOLOGY AND BIOINFORMATICS, 2024, 21 (05) : 1458 - 1467
  • [37] Autonomous Vehicle Path Prediction Using Conditional Variational Autoencoder Networks
    Jagadish, D. N.
    Chauhan, Arun
    Mahto, Lakshman
    ADVANCES IN KNOWLEDGE DISCOVERY AND DATA MINING, PAKDD 2021, PT I, 2021, 12712 : 129 - 139
  • [38] Forest Fire Spread Prediction using Deep Learning
    Khennou, Fadoua
    Ghaoui, Jade
    Akhloufi, Moulay A.
    GEOSPATIAL INFORMATICS XI, 2021, 11733
  • [39] Disease Progression Score Estimation From Multimodal Imaging and MicroRNA Data Using Supervised Variational Autoencoders
    Kmetzsch, Virgilio
    Becker, Emmanuelle
    Saracino, Dario
    Rinaldi, Daisy
    Camuzat, Agnes
    Le Ber, Isabelle
    Colliot, Olivier
    IEEE JOURNAL OF BIOMEDICAL AND HEALTH INFORMATICS, 2022, 26 (12) : 6024 - 6035
  • [40] Automated Discovery of Anomalous Features in Ultralarge Planetary Remote-Sensing Datasets Using Variational Autoencoders
    Lesnikowski, Adam
    Bickel, Valentin Tertius
    Angerhausen, Daniel
    IEEE JOURNAL OF SELECTED TOPICS IN APPLIED EARTH OBSERVATIONS AND REMOTE SENSING, 2024, 17 : 6589 - 6600