Modelling forest fire dynamics using conditional variational autoencoders

被引:0
|
作者
Ribeiro, Tiago Filipe Rodrigues [1 ]
de Silva, Fernando Jose Mateus da [1 ]
Costa, Rogerio Luis de Carvalho [1 ]
机构
[1] Polytech Inst Leiria, Comp Sci & Commun Res Ctr CI, ESTG, Bldg C-Campus 2,Morro Lena Alto Vieiro, P-2411901 Leiria, Portugal
关键词
Spatiotemporal data; Deep learning; Region interpolation; Conditional variational autoencoders; Forecasting; OBJECTS;
D O I
10.1007/s10796-024-10507-9
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Forest fires have far-reaching consequences, threatening human life, economic stability, and the environment. Understanding the dynamics of forest fires is crucial, especially in high-incidence regions. In this work, we apply deep networks to simulate the spatiotemporal progression of the area burnt in a forest fire. We tackle the region interpolation problem challenge by using a Conditional Variational Autoencoder (CVAE) model and generate in-between representations on the evolution of the burnt area. We also apply a CVAE model to forecast the progression of fire propagation, estimating the burnt area at distinct horizons and propagation stages. We evaluate our approach against other established techniques using real-world data. The results demonstrate that our method is competitive in geometric similarity metrics and exhibits superior temporal consistency for in-between representation generation. In the context of burnt area forecasting, our approach achieves scores of 90% for similarity and 99% for temporal consistency. These findings suggest that CVAE models may be a viable alternative for modeling the spatiotemporal evolution of 2D moving regions of forest fire evolution.
引用
收藏
页数:20
相关论文
共 50 条
  • [21] Detecting One-Pixel Attacks Using Variational Autoencoders
    Alatalo, Janne
    Sipola, Tuomo
    Kokkonen, Tero
    INFORMATION SYSTEMS AND TECHNOLOGIES, WORLDCIST 2022, VOL 1, 2022, 468 : 611 - 623
  • [22] Generation of whole building renovation scenarios using variational autoencoders
    Sharif, Seyed Amirhosain
    Hammad, Amin
    Eshraghi, Pegah
    ENERGY AND BUILDINGS, 2021, 230
  • [23] A balanced mineral prospectivity model of Canadian magmatic Ni (± Cu ± Co ± PGE) sulphide mineral systems using conditional variational autoencoders
    Nagasingha, Lahiru M. A.
    Berube, Charles L.
    Lawley, Christopher J. M.
    ORE GEOLOGY REVIEWS, 2024, 175
  • [24] Goal-oriented conditional variational autoencoders for proactive and knowledge-aware conversational recommender system
    Yan, Cen
    Bai, Jun
    Wang, Yanmeng
    Rong, Wenge
    Ouyang, Yuanxin
    Xiong, Zhang
    COMPUTER SPEECH AND LANGUAGE, 2023, 79
  • [25] Power Plant Model Parameter Calibration Using Conditional Variational Autoencoder
    Khazeiynasab, Seyyed Rashid
    Zhao, Junbo
    Batarseh, Issa
    Tan, Bendong
    IEEE TRANSACTIONS ON POWER SYSTEMS, 2022, 37 (02) : 1642 - 1652
  • [26] 3D HIGH-RESOLUTION CARDIAC SEGMENTATION RECONSTRUCTION FROM 2D VIEWS USING CONDITIONAL VARIATIONAL AUTOENCODERS
    Biffi, Carlo
    Cerrolaza, Juan J.
    Tarroni, Giacomo
    de Marvao, Antonio
    Cook, Stuart A.
    O'Regan, Declan P.
    Rueckert, Daniel
    2019 IEEE 16TH INTERNATIONAL SYMPOSIUM ON BIOMEDICAL IMAGING (ISBI 2019), 2019, : 1643 - 1646
  • [27] Unsupervised Linear and Nonlinear Channel Equalization and Decoding Using Variational Autoencoders
    Caciularu, Avi
    Burshtein, David
    IEEE TRANSACTIONS ON COGNITIVE COMMUNICATIONS AND NETWORKING, 2020, 6 (03) : 1003 - 1018
  • [28] MoveAE: Modifying Affective Robot Movements Using Classifying Variational Autoencoders
    Suguitan, Michael
    Gomez, Randy
    Hoffman, Guy
    PROCEEDINGS OF THE 2020 ACM/IEEE INTERNATIONAL CONFERENCE ON HUMAN-ROBOT INTERACTION (HRI '20), 2020, : 481 - 489
  • [29] MODELING WOUND HEALING USING VECTOR QUANTIZED VARIATIONAL AUTOENCODERS AND TRANSFORMERS
    Backova, Lenka
    Bengoetxea, Guillermo
    Rogalla, Svana
    Franco-Barranco, Daniel
    Solon, Jerome
    Arganda-Carreras, Ignacio
    2023 IEEE 20TH INTERNATIONAL SYMPOSIUM ON BIOMEDICAL IMAGING, ISBI, 2023,
  • [30] Generating Adversarial Samples on Multivariate Time Series using Variational Autoencoders
    Harford, Samuel
    Karim, Fazle
    Darabi, Houshang
    IEEE-CAA JOURNAL OF AUTOMATICA SINICA, 2021, 8 (09) : 1523 - 1538