Modelling forest fire dynamics using conditional variational autoencoders

被引:0
|
作者
Ribeiro, Tiago Filipe Rodrigues [1 ]
de Silva, Fernando Jose Mateus da [1 ]
Costa, Rogerio Luis de Carvalho [1 ]
机构
[1] Polytech Inst Leiria, Comp Sci & Commun Res Ctr CI, ESTG, Bldg C-Campus 2,Morro Lena Alto Vieiro, P-2411901 Leiria, Portugal
关键词
Spatiotemporal data; Deep learning; Region interpolation; Conditional variational autoencoders; Forecasting; OBJECTS;
D O I
10.1007/s10796-024-10507-9
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Forest fires have far-reaching consequences, threatening human life, economic stability, and the environment. Understanding the dynamics of forest fires is crucial, especially in high-incidence regions. In this work, we apply deep networks to simulate the spatiotemporal progression of the area burnt in a forest fire. We tackle the region interpolation problem challenge by using a Conditional Variational Autoencoder (CVAE) model and generate in-between representations on the evolution of the burnt area. We also apply a CVAE model to forecast the progression of fire propagation, estimating the burnt area at distinct horizons and propagation stages. We evaluate our approach against other established techniques using real-world data. The results demonstrate that our method is competitive in geometric similarity metrics and exhibits superior temporal consistency for in-between representation generation. In the context of burnt area forecasting, our approach achieves scores of 90% for similarity and 99% for temporal consistency. These findings suggest that CVAE models may be a viable alternative for modeling the spatiotemporal evolution of 2D moving regions of forest fire evolution.
引用
收藏
页数:20
相关论文
共 50 条
  • [1] Generating multiperspective process traces using conditional variational autoencoders
    Riccardo Graziosi
    Massimiliano Ronzani
    Andrei Buliga
    Chiara Di Francescomarino
    Francesco Folino
    Chiara Ghidini
    Francesca Meneghello
    Luigi Pontieri
    Process Science, 2 (1):
  • [2] Masked Conditional Variational Autoencoders for Chromosome Straightening
    Li, Jingxiong
    Zheng, Sunyi
    Shui, Zhongyi
    Zhang, Shichuan
    Yang, Linyi
    Sun, Yuxuan
    Zhang, Yunlong
    Li, Honglin
    Ye, Yuanxin
    van Ooijen, Peter M. A.
    Li, Kang
    Yang, Lin
    IEEE TRANSACTIONS ON MEDICAL IMAGING, 2024, 43 (01) : 216 - 228
  • [3] Learning the health index of complex systems using dynamic conditional variational autoencoders
    Wei, Yupeng
    Wu, Dazhong
    Terpenny, Janis
    RELIABILITY ENGINEERING & SYSTEM SAFETY, 2021, 216
  • [4] Conditional Constrained Graph Variational Autoencoders for Molecule Design
    Rigoni, Davide
    Navarin, Nicola
    Sperduti, Alessandro
    2020 IEEE SYMPOSIUM SERIES ON COMPUTATIONAL INTELLIGENCE (SSCI), 2020, : 729 - 736
  • [5] Where Will They Go? Predicting Fine-Grained Adversarial Multi-agent Motion Using Conditional Variational Autoencoders
    Felsen, Panna
    Lucey, Patrick
    Ganguly, Sujoy
    COMPUTER VISION - ECCV 2018, PT XI, 2018, 11215 : 761 - 776
  • [6] An Automated Medical Image Segmentation Framework using Deep Learning and Variational Autoencoders with Conditional Neural Networks
    Rao, Dustakar Surendra
    Rao, L. Koteswara
    Vipparthi, Bhagyaraju
    INTERNATIONAL JOURNAL OF ADVANCED COMPUTER SCIENCE AND APPLICATIONS, 2023, 14 (08) : 568 - 578
  • [7] Towards Realistic 3D Ultrasound Synthesis: Deformable Augmentation using Conditional Variational Autoencoders
    Wulff, Daniel
    Dohnke, Timoll
    Nguyen, Ngoc Thinh
    Ernst, Floris
    2023 IEEE 36TH INTERNATIONAL SYMPOSIUM ON COMPUTER-BASED MEDICAL SYSTEMS, CBMS, 2023, : 821 - 826
  • [8] Simulating Tariff Impact in Electrical Energy Consumption Profiles With Conditional Variational Autoencoders
    Bregere, Margaux
    Bessa, Ricardo J.
    IEEE ACCESS, 2020, 8 : 131949 - 131966
  • [9] DoS and DDoS mitigation using Variational Autoencoders
    Barli, Eirik Molde
    Yazidi, Anis
    Viedma, Enrique Herrera
    Haugerud, Harek
    COMPUTER NETWORKS, 2021, 199
  • [10] Non-deterministic and emotional chatting machine: learning emotional conversation generation using conditional variational autoencoders
    Kaichun Yao
    Libo Zhang
    Tiejian Luo
    Dawei Du
    Yanjun Wu
    Neural Computing and Applications, 2021, 33 : 5581 - 5589