Machine Learning Based Classification of Depression Using Motor Activity Data and Autoregressive Model

被引:1
作者
Schulte, Alexander [1 ]
Breiksch, Tim [1 ]
Brockmann, Jonas [1 ]
Bauer, Nadja [1 ]
机构
[1] Univ Appl Sci & Arts Dortmund, Dortmund, Germany
来源
GERMAN MEDICAL DATA SCIENCES 2022 - FUTURE MEDICINE: MORE PRECISE, MORE INTEGRATIVE, MORE SUSTAINABLE | 2022年 / 296卷
关键词
Machine learning; depression classification; actometer data; actigraphy watch; depresjon dataset; autoregressive model; UNIPOLAR; BIPOLAR;
D O I
10.3233/SHTI220800
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Machine learning based disease classification have already achieved amazing results in medicine: for example, models can find a tumor in computer tomography images at least as accurately as experts in the field. Since the development and widespread use of actigraphy watches, activity data has been used as a basis for diagnosing various diseases such as depression or Alzheimer's disease. In this study, we use a dataset with activity measurements of mentally ill and healthy people, calculate various features and achieve a classification accuracy of over 78%. The paper describes and motivates the used features, discusses differences between healthy, bipolar 2 and unipolar participants and compares several well-known machine learning classifiers on different classification tasks and with different feature sets.
引用
收藏
页码:25 / 32
页数:8
相关论文
共 13 条
[1]   Actigraphic registration of motor activity reveals a more structured behavioural pattern in schizophrenia than in major depression [J].
Berle J.O. ;
Hauge E.R. ;
Oedegaard K.J. ;
Holsten F. ;
Fasmer O.B. .
BMC Research Notes, 3 (1)
[2]  
Box G. E. P., 1970, Time series analysis, forecasting and control
[3]   Distinctions between bipolar and unipolar depression [J].
Cuellar, AK ;
Johnson, SL ;
Winters, R .
CLINICAL PSYCHOLOGY REVIEW, 2005, 25 (03) :307-339
[4]   DEPRESJON: A Motor Activity Database of Depression Episodes in Unipolar and Bipolar Patients [J].
Garcia-Ceja, Enrique ;
Riegler, Michael ;
Jakobsen, Petter ;
Torresen, Jim ;
Nordgreen, Tine ;
Oedegaard, Ketil J. ;
Fasmer, Ole Bernt .
PROCEEDINGS OF THE 9TH ACM MULTIMEDIA SYSTEMS CONFERENCE (MMSYS'18), 2018, :472-477
[5]  
Hastie T., 2009, The Elements of Statistical Learning: Data Mining, Inference and Prediction, V2nd, DOI [10.1007/978-0-387-84858-7, DOI 10.1007/978-0-387-84858-7]
[6]   Depression Prediction by Using Ecological Momentary Assessment, Actiwatch Data, and Machine Learning: Observational Study on Older Adults Living Alone [J].
Kim, Heejung ;
Lee, SungHee ;
Lee, SangEun ;
Hong, Soyun ;
Kang, HeeJae ;
Kim, Namhee .
JMIR MHEALTH AND UHEALTH, 2019, 7 (10)
[7]   Screening for Depression in Daily Life: Development and External Validation of a Prediction Model Based on Actigraphy and Experience Sampling Method [J].
Minaeva, Olga ;
Riese, Harriette ;
Lamers, Femke ;
Antypa, Niki ;
Wichers, Marieke ;
Booij, Sanne H. .
JOURNAL OF MEDICAL INTERNET RESEARCH, 2020, 22 (12)
[8]   Machine Learning-Based Behavioral Diagnostic Tools for Depression: Advances, Challenges, and Future Directions [J].
Richter, Thalia ;
Fishbain, Barak ;
Richter-Levin, Gal ;
Okon-Singer, Hadas .
JOURNAL OF PERSONALIZED MEDICINE, 2021, 11 (10)
[9]   Classification of Depressive Episodes Using Nighttime Data; a Multivariate and Univariate Analysis [J].
Rodriguez-Ruiz, J. G. ;
Galvan-Tejada, C. E. ;
Vazquez-Reyes, S. ;
Galvan-Tejada, J. I. ;
Gamboa-Rosales, H. .
PROGRAMMING AND COMPUTER SOFTWARE, 2020, 46 (08) :689-698
[10]   Global prevalence and burden of depressive and anxiety disorders in 204 countries and territories in 2020 due to the COVID-19 pandemic [J].
Santomauro, Damian F. ;
Herrera, Ana M. Mantilla ;
Shadid, Jamileh ;
Zheng, Peng ;
Ashbaugh, Charlie ;
Pigott, David M. ;
Abbafati, Cristiana ;
Adolph, Christopher ;
Amlag, Joanne O. ;
Aravkin, Aleksandr Y. ;
Bang-Jensen, Bree L. ;
Bertolacci, Gregory J. ;
Bloom, Sabina S. ;
Castellano, Rachel ;
Castro, Emma ;
Chakrabarti, Suman ;
Chattopadhyay, Jhilik ;
Cogen, Rebecca M. ;
Collins, James K. ;
Dai, Xiaochen ;
Dangel, William James ;
Dapper, Carolyn ;
Deen, Amanda ;
Erickson, Megan ;
Ewald, Samuel B. ;
Flaxman, Abraham D. ;
Frostad, Joseph Jon ;
Fullman, Nancy ;
Giles, John R. ;
Giref, Ababi Zergaw ;
Guo, Gaorui ;
He, Jiawei ;
Helak, Monika ;
Hulland, Erin N. ;
Idrisov, Bulat ;
Lindstrom, Akiaja ;
Linebarger, Emily ;
Lotufo, Paulo A. ;
Lozano, Rafael ;
Magistro, Beatrice ;
Malta, Deborah Carvalho ;
Mansson, Johan C. ;
Marinho, Fatima ;
Monasta, Ali H. Mokdad Lorenzo ;
Naik, Paulami ;
Nomura, Shuhei ;
O'Halloran, James Kevin ;
Ostroff, Samuel M. ;
Pasovic, Maja ;
Penberthy, Louise .
LANCET, 2021, 398 (10312) :1700-1712