Machine learning on longitudinal multi-modal data enables the understanding and prognosis of Alzheimer's disease progression

被引:1
作者
Zhang, Suixia [1 ,5 ]
Yuan, Jing [2 ]
Sun, Yu [1 ]
Wu, Fei [1 ]
Liu, Ziyue [2 ]
Zhai, Feifei [2 ]
Zhang, Yaoyun [3 ]
Somekh, Judith [4 ]
Peleg, Mor [4 ]
Zhu, Yi-Cheng [2 ]
Huang, Zhengxing [1 ]
机构
[1] Zhejiang Univ, 866 Yuhangtang Rd, Hangzhou 310058, Peoples R China
[2] Chinese Acad Med Sci, Peking Union Med Coll Hosp, Peking Union Med Coll, Dept Neurol, Beijing 100730, Peoples R China
[3] DAMO Acad, Alibaba Grp, 969 Wenyixi Rd, Hangzhou 310058, Peoples R China
[4] Univ Haifa, Dept Informat Syst, IL-3303220 Haifa, Israel
[5] Xinjiang Med Univ, Dept Med Engn & Technol, Urumqi 830017, Peoples R China
基金
美国国家卫生研究院; 加拿大健康研究院;
关键词
HIDDEN MARKOV MODEL; INDIVIDUALS; SUBTYPES; AUTOPSY; ATROPHY;
D O I
10.1016/j.isci.2024.110263
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Alzheimer's disease (AD) is a complex pathophysiological disease. Allowing for heterogeneity, not only disease manifestations but also in different progression patterns, is critical for developing effective ease models that can be used in clinical and research settings. We introduce a machine learning for identifying underlying patterns in Alzheimer's disease (AD) trajectory using longitudinal multi -modal data from the ADNI cohort and the AIBL cohort. Ten biologically and clinically meaningful disease -related states were identified from data, which constitute three non -overlapping stages (i.e., neocortical atrophy [NCA], medial temporal atrophy [MTA], and whole brain atrophy [WBA]) and two distinct disease progression patterns (i.e., NCA -> WBA and MTA -> WBA). The index of disease -related states provided a remarkable performance in predicting the time to conversion to AD dementia (C -Index: 0.923 +/- 0.007). model shows potential for promoting the understanding of heterogeneous disease progression and predicting the conversion time to AD dementia.
引用
收藏
页数:20
相关论文
共 55 条
[1]   The significance of medial temporal lobe atrophy [J].
Barkhof, F. ;
Polvikoski, T. M. ;
Van Straaten, E. C. W. ;
Kalaria, R. N. ;
Sulkava, R. ;
Aronen, H. J. ;
Niinisto, L. ;
Rastas, S. ;
Oinas, M. ;
Scheltens, P. ;
Erkinjuntti, T. .
NEUROLOGY, 2007, 69 (15) :1521-1527
[2]   FreeSurfer 5.3 versus 6.0: are volumes comparable? A Chronic Effects of Neurotrauma Consortium study [J].
Bigler, Erin D. ;
Skiles, Marc ;
Wade, Benjamin S. C. ;
Abildskov, Tracy J. ;
Tustison, Nick J. ;
Scheibel, Randall S. ;
Newsome, Mary R. ;
Mayer, Andrew R. ;
Stone, James R. ;
Taylor, Brian A. ;
Tate, David F. ;
Walker, William C. ;
Levin, Harvey S. ;
Wilde, Elisabeth A. .
BRAIN IMAGING AND BEHAVIOR, 2020, 14 (05) :1318-1327
[3]   Test-retest reliability of FreeSurfer automated hippocampal subfield segmentation within and across scanners [J].
Brown, Emma M. ;
Pierce, Meghan E. ;
Clark, Dustin C. ;
Fischl, Bruce R. ;
Iglesias, Juan E. ;
Milberg, William P. ;
McGlinchey, Regina E. ;
Salat, David H. .
NEUROIMAGE, 2020, 210
[4]   Sex Mediates Relationships Between Regional Tau Pathology and Cognitive Decline [J].
Buckley, Rachel F. ;
Scott, Matthew R. ;
Jacobs, Heidi I. L. ;
Schultz, Aaron P. ;
Properzi, Michael J. ;
Amariglio, Rebecca E. ;
Hohman, Timothy J. ;
Mayblyum, Danielle V. ;
Rubinstein, Zoe B. ;
Manning, Lyssa ;
Hanseeuw, Bernard J. ;
Mormino, Elizabeth C. ;
Rentz, Dorene M. ;
Johnson, Keith A. ;
Sperling, Reisa A. .
ANNALS OF NEUROLOGY, 2020, 88 (05) :921-932
[5]   Automatic Enhancement and Detection of Layering in Radar Sounder Data Based on a Local Scale Hidden Markov Model and the Viterbi Algorithm [J].
Carrer, Leonardo ;
Bruzzone, Lorenzo .
IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2017, 55 (02) :962-977
[6]   Automatic multispectral MRI segmentation of human hippocampal subfields: an evaluation of multicentric test-retest reproducibility [J].
Chiappiniello, Andrea ;
Tarducci, Roberto ;
Muscio, Cristina ;
Bruzzone, Maria Grazia ;
Bozzali, Marco ;
Tiraboschi, Pietro ;
Nigri, Anna ;
Ambrosi, Claudia ;
Chipi, Elena ;
Ferraro, Stefania ;
Festari, Cristina ;
Gasparotti, Roberto ;
Gianeri, Ruben ;
Giulietti, Giovanni ;
Mascaro, Lorella ;
Montanucci, Chiara ;
Nicolosi, Valentina ;
Rosazza, Cristina ;
Serra, Laura ;
Frisoni, Giovanni B. ;
Perani, Daniela ;
Tagliavini, Fabrizio ;
Jovicich, Jorge .
BRAIN STRUCTURE & FUNCTION, 2021, 226 (01) :137-150
[7]   Navigating Neuroimaging Datasets ADNI for Alzheimer's Disease [J].
Chu, N. Nan ;
Gebre-Amlak, Haymanot .
IEEE CONSUMER ELECTRONICS MAGAZINE, 2021, 10 (05) :61-63
[8]   Plasma biomarkers of Alzheimer's disease improve prediction of cognitive decline in cognitively unimpaired elderly populations [J].
Cullen, Nicholas C. ;
Leuzy, Antoine ;
Janelidze, Shorena ;
Palmqvist, Sebastian ;
Svenningsson, Anna L. ;
Stomrud, Erik ;
Dage, Jeffrey L. ;
Mattsson-Carlgren, Niklas ;
Hansson, Oskar .
NATURE COMMUNICATIONS, 2021, 12 (01)
[9]   Progression of Alzheimer's Disease: A Longitudinal Study in Norwegian Memory Clinics [J].
Eldholm, Rannveig Sakshaug ;
Barca, Maria Lage ;
Persson, Karin ;
Knapskog, Anne-Brita ;
Kersten, Hege ;
Engedal, Knut ;
Selbaek, Geir ;
Braekhus, Anne ;
Skovlund, Eva ;
Saltvedt, Ingvild .
JOURNAL OF ALZHEIMERS DISEASE, 2018, 61 (03) :1221-1232
[10]   Rates of diagnostic transition and cognitive change at 18-month follow-up among 1,112 participants in the Australian Imaging, Biomarkers and Lifestyle Flagship Study of Ageing (AIBL) [J].
Ellis, Kathryn A. ;
Szoeke, Cassandra ;
Bush, Ashley I. ;
Darby, David ;
Graham, Petra L. ;
Lautenschlager, Nicola T. ;
Macaulay, S. Lance ;
Martins, Ralph N. ;
Maruff, Paul ;
Masters, Colin L. ;
McBride, Simon J. ;
Pike, Kerryn E. ;
Rainey-Smith, Stephanie R. ;
Rembach, Alan ;
Robertson, Joanne ;
Rowe, Christopher C. ;
Savage, Greg ;
Villemagne, Victor L. ;
Woodward, Michael ;
Wilson, William ;
Zhang, Ping ;
Ames, David .
INTERNATIONAL PSYCHOGERIATRICS, 2014, 26 (04) :543-554