A nonlinear semigroup approach to Hamilton-Jacobi equations-revisited

被引:0
作者
Ni, Panrui [1 ]
Wang, Lin [2 ]
机构
[1] Fudan Univ, Shanghai Ctr Math Sci, Shanghai 200438, Peoples R China
[2] Beijing Inst Technol, Sch Math & Stat, Beijing 100081, Peoples R China
关键词
Aubry-Mather theory; Weak KAM theory; Hamiltonian systems; Contact Hamiltonian systems; LARGE TIME BEHAVIOR; VISCOSITY SOLUTIONS; CONVERGENCE;
D O I
10.1016/j.jde.2024.05.039
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We consider the Hamilton-Jacobi equation H (x, Du) + lambda(x)u = c, x is an element of M, where M is a connected, closed and smooth Riemannian manifold. The functions H (x, p) and lambda(x) are continuous. H (x, p) is convex, coercive with respect to p , and lambda(x) changes the signs. The first breakthrough to this model was achieved by Jin-Yan-Zhao [11] under the Tonelli conditions. In this paper, we consider more detailed structure of the viscosity solution set and large time behavior of the viscosity solution on the Cauchy problem. To the best of our knowledge, it is the first detailed description of the large time behavior of the HJ equations with non-monotone dependence on the unknown function. (c) 2024 Published by Elsevier Inc.
引用
收藏
页码:272 / 307
页数:36
相关论文
共 22 条
[1]  
Cannarsa P., 2004, PROG NONLIN, V58, DOI [10.1007/b138356, DOI 10.1007/B138356]
[2]   Herglotz' variational principle and Lax-Oleinik evolution [J].
Cannarsa, Piermarco ;
Cheng, Wei ;
Jin, Liang ;
Wang, Kaizhi ;
Yan, Jun .
JOURNAL DE MATHEMATIQUES PURES ET APPLIQUEES, 2020, 141 :99-136
[3]   Lagrangian graphs, minimizing measures and Mane's critical values [J].
Contreras, G ;
Iturriaga, R ;
Paternain, GP ;
Paternain, M .
GEOMETRIC AND FUNCTIONAL ANALYSIS, 1998, 8 (05) :788-809
[4]   USERS GUIDE TO VISCOSITY SOLUTIONS OF 2ND-ORDER PARTIAL-DIFFERENTIAL EQUATIONS [J].
CRANDALL, MG ;
ISHII, H ;
LIONS, PL .
BULLETIN OF THE AMERICAN MATHEMATICAL SOCIETY, 1992, 27 (01) :1-67
[5]   A generalized dynamical approach to the large time behavior of solutions of Hamilton-Jacobi equations [J].
Davini, Andrea ;
Siconolfi, Antonio .
SIAM JOURNAL ON MATHEMATICAL ANALYSIS, 2006, 38 (02) :478-502
[6]   Convergence of the solutions of the discounted Hamilton-Jacobi equation [J].
Davini, Andrea ;
Fathi, Albert ;
Iturriaga, Renato ;
Zavidovique, Maxime .
INVENTIONES MATHEMATICAE, 2016, 206 (01) :29-55
[7]  
Fathi A., 2008, WEAK KAM THEOREM LAG
[8]   Asymptotic solutions for large time of Hamilton-Jacobi equations in Euclidean n space [J].
Ishii, Hitoshi .
ANNALES DE L INSTITUT HENRI POINCARE-ANALYSE NON LINEAIRE, 2008, 25 (02) :231-266
[9]   Hamilton-Jacobi equations with their Hamiltonians depending Lipschitz continuously on the unknown [J].
Ishii, Hitoshi ;
Wang, Kaizhi ;
Wang, Lin ;
Yan, Jun .
COMMUNICATIONS IN PARTIAL DIFFERENTIAL EQUATIONS, 2022, 47 (02) :417-452
[10]   A Short Introduction to Viscosity Solutions and the Large Time Behavior of Solutions of Hamilton-Jacobi Equations [J].
Ishii, Hitoshi .
HAMILTON-JACOBI EQUATIONS: APPROXIMATIONS, NUMERICAL ANALYSIS AND APPLICATIONS, CETRARO, ITALY 2011, 2013, 2074 :111-249