Phase regulation of manganese vanadium oxide and its effects on capacity for aqueous zinc-ion battery

被引:3
作者
Tan, Yongtao [1 ]
Niu, Xiaowen [1 ]
Chen, Jianhai [1 ]
机构
[1] Ningxia Univ, Sch Mat & New Energy, Ningxia Key Lab Photovolta Mat, Yinchuan 750021, Peoples R China
基金
中国国家自然科学基金;
关键词
Manganese vanadium oxide; Phase regulation; Zinc ion battery; CATHODE MATERIAL;
D O I
10.1016/j.est.2024.113230
中图分类号
TE [石油、天然气工业]; TK [能源与动力工程];
学科分类号
0807 ; 0820 ;
摘要
Phase structure in manganese vanadium oxide is very important for zinc ion battery. This work aims to regulate the phase structure of manganese vanadium oxide from MnV12O31 & sdot;10H2O 12 O 31 & sdot; 10H 2 O to Mn(VO3)2 3 ) 2 by mass loading of Mn sources. In addition, the influences of morphologies and phase structure on capacity are studied in detail. The results show that MnV12O31 & sdot;10H2O 12 O 31 & sdot; 10H 2 O appears at loading lower Mn source, while, Mn(VO3)2 3 ) 2 appears at loading higher Mn source. The optimized sample of Mn(VO3)2/MnV12O31 & sdot;10H2O 3 ) 2 /MnV 12 O 31 & sdot; 10H 2 O composite (MnVO-0.5) shows high specific capacity of 323.6 mAh g- 1 and high maximum energy density of 269.43 Wh kg-1 with excellent capacity retention.
引用
收藏
页数:8
相关论文
共 50 条
[31]   Co-insertion of K+ and Ca2+ in vanadium oxide as high-performance aqueous zinc-ion battery cathode material [J].
Li, Zhaoao ;
Yang, Linyu ;
Wang, Shuying ;
Zhu, Kunjie ;
Li, Haibing .
JOURNAL OF ALLOYS AND COMPOUNDS, 2024, 992
[32]   Polar Organic Molecules Inserted in Vanadium Oxide with Enhanced Reaction Kinetics for Promoting Aqueous Zinc-Ion Storage [J].
Cheng, Xiaojun ;
Xiang, Zhengpeng ;
Yang, Chen ;
Li, Youyi ;
Wang, Lei ;
Zhang, Qi .
ADVANCED FUNCTIONAL MATERIALS, 2024, 34 (09)
[33]   A robust ion transport channel sulfonated modified separator for aqueous zinc-ion battery [J].
Wang, Chenlong ;
Tang, Wenbin ;
Xu, Jin ;
Zu, Yifan ;
Sun, Yanyan ;
Wei, Anfang ;
Nie, Wenqi .
MATERIALS LETTERS, 2025, 385
[34]   Boosting proton storage in layered vanadium oxides for aqueous zinc-ion batteries [J].
Wu, Tzu-Ho ;
Lin, Wei-Sheng .
ELECTROCHIMICA ACTA, 2021, 394
[35]   Recent Advances in Vanadium-Based Aqueous Rechargeable Zinc-Ion Batteries [J].
Liu, Shude ;
Kang, Ling ;
Kim, Jong Min ;
Chun, Young Tea ;
Zhang, Jian ;
Jun, Seong Chan .
ADVANCED ENERGY MATERIALS, 2020, 10 (25)
[36]   Revealing the role of calcium ion intercalation of hydrated vanadium oxides for aqueous zinc-ion batteries [J].
Zhou, Tao ;
Du, Xuan ;
Gao, Guo .
JOURNAL OF ENERGY CHEMISTRY, 2024, 95 :9-19
[37]   Stabilizing aqueous zinc-ion battery with cellulose/graphene hybrid separator through dual regulation of fast desolvation and ion deposition [J].
Wu, Hongqin ;
Gao, Shujie ;
Pang, Yanjun ;
Huang, Haocun ;
Sun, Kexin ;
Xu, Yanglei ;
Xu, Feng ;
Kharaziha, Mahshid ;
Zhang, Xueming .
JOURNAL OF POWER SOURCES, 2025, 650
[38]   Electrochemical Activation of Manganese-Based Cathode in Aqueous Zinc-Ion Electrolyte [J].
Zhang, Tengsheng ;
Tang, Yan ;
Fang, Guozhao ;
Zhang, Chenyang ;
Zhang, Hongliang ;
Guo, Xun ;
Cao, Xinxin ;
Zhou, Jiang ;
Pan, Anqiang ;
Liang, Shuquan .
ADVANCED FUNCTIONAL MATERIALS, 2020, 30 (30)
[39]   Reaction mechanisms for electrolytic manganese dioxide in rechargeable aqueous zinc-ion batteries [J].
Tran, Thuy Nguyen Thanh ;
Jin, Susi ;
Cuisinier, Marine ;
Adams, Brian D. ;
Ivey, Douglas G. .
SCIENTIFIC REPORTS, 2021, 11 (01)
[40]   Manganese-based materials as cathode for rechargeable aqueous zinc-ion batteries [J].
Guo, Yixuan ;
Zhang, Yixiang ;
Lu, Hongbin .
BATTERY ENERGY, 2022, 1 (02)