Stochastic First-Order Algorithms for Constrained Distributionally Robust Optimization

被引:0
作者
Im, Hyungki [1 ]
Grigas, Paul [1 ]
机构
[1] Univ Calif Berkeley, Dept Ind Engn & Operat Res, Berkeley, CA 94720 USA
基金
美国国家科学基金会;
关键词
distributionally robust optimization; stochastic first-order methods; saddle point problems;
D O I
10.1287/ijoc.2023.0167
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
We consider distributionally robust optimization (DRO) problems, reformulated as distributionally robust feasibility (DRF) problems, with multiple expectation constraints. We propose a generic stochastic first-order meta-algorithm, where the decision variables and uncertain distribution parameters are each updated separately by applying stochastic first-order methods. We then specialize our results to the case of using two specific versions of stochastic mirror descent (SMD): (i) a novel approximate version of SMD to update the decision variables, and (ii) the bandit mirror descent method to update the distribution parameters in the case of chi 2-divergence sets. For this specialization, we demonstrate that the total number of iterations is independent of the dimensions of the decision variables and distribution parameters. Moreover, the cost per iteration to update both sets of variables is nearly independent of the dimension of the distribution parameters, allowing for high-dimensional ambiguity sets. Furthermore, we show that the total number of iterations of our algorithm has a logarithmic dependence on the number of constraints. Experiments on logistic regression with fairness constraints, personalized parameter selection in a social network, and the multi-item newsvendor problem verify the theoretical results and show the usefulness of the algorithm, in particular when the dimension of the distribution parameters is large.
引用
收藏
页码:212 / 229
页数:19
相关论文
共 49 条
[1]   Conservative Stochastic Optimization With Expectation Constraints [J].
Akhtar, Zeeshan ;
Bedi, Amrit Singh ;
Rajawat, Ketan .
IEEE TRANSACTIONS ON SIGNAL PROCESSING, 2021, 69 :3190-3205
[2]  
Basu K, 2019, PREPRINT
[3]  
Becker B., 1996, Adult. uci machine learning repository, DOI DOI 10.24432/C5XW20
[4]   Oracle-Based Robust Optimization via Online Learning [J].
Ben-Tal, Aharon ;
Hazan, Elad ;
Koren, Tomer ;
Mannor, Shie .
OPERATIONS RESEARCH, 2015, 63 (03) :628-638
[5]   Deriving robust counterparts of nonlinear uncertain inequalities [J].
Ben-Tal, Aharon ;
den Hertog, Dick ;
Vial, Jean-Philippe .
MATHEMATICAL PROGRAMMING, 2015, 149 (1-2) :265-299
[6]   Robust Solutions of Optimization Problems Affected by Uncertain Probabilities [J].
Ben-Tal, Aharon ;
den Hertog, Dick ;
De Waegenaere, Anja ;
Melenberg, Bertrand ;
Rennen, Gijs .
MANAGEMENT SCIENCE, 2013, 59 (02) :341-357
[7]  
BenTal A, 2009, PRINC SER APPL MATH, P1
[8]   Data-driven robust optimization [J].
Bertsimas, Dimitris ;
Gupta, Vishal ;
Kallus, Nathan .
MATHEMATICAL PROGRAMMING, 2018, 167 (02) :235-292
[9]   Theory and Applications of Robust Optimization [J].
Bertsimas, Dimitris ;
Brown, David B. ;
Caramanis, Constantine .
SIAM REVIEW, 2011, 53 (03) :464-501
[10]   Optimal Transport-Based Distributionally Robust Optimization: Structural Properties and Iterative Schemes [J].
Blanchet, Jose ;
Murthy, Karthyek ;
Zhang, Fan .
MATHEMATICS OF OPERATIONS RESEARCH, 2022, 47 (02) :1500-1529