Fast normalized cross-correlation for template matching with rotations

被引:3
作者
Almira, Jose Maria [1 ]
Phelippeau, Harold [2 ]
Martinez-Sanchez, Antonio [3 ]
机构
[1] Univ Murcia, Dept Engn & Comp Technol, Appl Math, Campus Espinardo, Murcia 30100, Spain
[2] Thermo Fisher Sci, Mat & Struct Anal Div, Adv Technol, Bordeaux, France
[3] Univ Murcia, Dept Informat & Commun Engn, Campus Espinardo, Murcia 30100, Spain
关键词
Template matching; Tensors; Rotations and Quaternions; 3D images; Cross-correlation; Convolution; Hyperspherical harmonics; Cryo-electron microscopy; Tomography; TENSORS;
D O I
10.1007/s12190-024-02157-6
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Normalized cross-correlation is the reference approach to carry out template matching on images. When it is computed in Fourier space, it can handle efficiently template translations but it cannot do so with template rotations. Including rotations requires sampling the whole space of rotations, repeating the computation of the correlation each time.This article develops an alternative mathematical theory to handle efficiently, at the same time, rotations and translations. Our proposal has a reduced computational complexity because it does not require to repeatedly sample the space of rotations. To do so, we integrate the information relative to all rotated versions of the template into a unique symmetric tensor template -which is computed only once per template-. Afterward, we demonstrate that the correlation between the image to be processed with the independent tensor components of the tensorial template contains enough information to recover template instance positions and rotations. Our proposed method has the potential to speed up conventional template matching computations by a factor of several magnitude orders for the case of 3D images.
引用
收藏
页码:4937 / 4969
页数:33
相关论文
共 24 条
  • [11] Convolution on the n-Sphere With Application to PDF Modeling
    Dokmanic, Ivan
    Petrinovic, Davor
    [J]. IEEE TRANSACTIONS ON SIGNAL PROCESSING, 2010, 58 (03) : 1157 - 1170
  • [12] Ebbinghaus H.D., 1991, NUMBERS, DOI [10.1007/978-1-4612-1005-4, DOI 10.1007/978-1-4612-1005-4]
  • [13] Principled Design and Implementation of Steerable Detectors
    Fageot, Julien
    Uhlmann, Virginie
    Puespoeki, Zsuzsanna
    Beck, Benjamin
    Unser, Michael
    Depeursinge, Adrien
    [J]. IEEE TRANSACTIONS ON IMAGE PROCESSING, 2021, 30 : 4465 - 4478
  • [14] Forsyth D. A., 2002, Computer Vision: A Modern Approach
  • [15] On the best rank-1 approximation of higher-order supersymmetric tensors
    Kofidis, E
    Regalia, PA
    [J]. SIAM JOURNAL ON MATRIX ANALYSIS AND APPLICATIONS, 2002, 23 (03) : 863 - 884
  • [16] SHIFTED POWER METHOD FOR COMPUTING TENSOR EIGENPAIRS
    Kolda, Tamara G.
    Mayo, Jackson R.
    [J]. SIAM JOURNAL ON MATRIX ANALYSIS AND APPLICATIONS, 2011, 32 (04) : 1095 - 1124
  • [17] Kozhasov K., 2022, arXiv
  • [18] MemBrain: A deep learning-aided pipeline for detection of membrane proteins in Cryo-electron tomograms
    Lamm, Lorenz
    Righetto, Ricardo D.
    Wietrzynski, Wojciech
    Poge, Matthias
    Martinez-Sanchez, Antonio
    Peng, Tingying
    Engel, Benjamin D.
    [J]. COMPUTER METHODS AND PROGRAMS IN BIOMEDICINE, 2022, 224
  • [19] Lewis JP, 1994, PROC CANAD IMAG PROC, P120
  • [20] Martinez-Sanchez A., TENSORIAL TEMPLATE M