Fast normalized cross-correlation for template matching with rotations

被引:3
作者
Almira, Jose Maria [1 ]
Phelippeau, Harold [2 ]
Martinez-Sanchez, Antonio [3 ]
机构
[1] Univ Murcia, Dept Engn & Comp Technol, Appl Math, Campus Espinardo, Murcia 30100, Spain
[2] Thermo Fisher Sci, Mat & Struct Anal Div, Adv Technol, Bordeaux, France
[3] Univ Murcia, Dept Informat & Commun Engn, Campus Espinardo, Murcia 30100, Spain
关键词
Template matching; Tensors; Rotations and Quaternions; 3D images; Cross-correlation; Convolution; Hyperspherical harmonics; Cryo-electron microscopy; Tomography; TENSORS;
D O I
10.1007/s12190-024-02157-6
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Normalized cross-correlation is the reference approach to carry out template matching on images. When it is computed in Fourier space, it can handle efficiently template translations but it cannot do so with template rotations. Including rotations requires sampling the whole space of rotations, repeating the computation of the correlation each time.This article develops an alternative mathematical theory to handle efficiently, at the same time, rotations and translations. Our proposal has a reduced computational complexity because it does not require to repeatedly sample the space of rotations. To do so, we integrate the information relative to all rotated versions of the template into a unique symmetric tensor template -which is computed only once per template-. Afterward, we demonstrate that the correlation between the image to be processed with the independent tensor components of the tensorial template contains enough information to recover template instance positions and rotations. Our proposed method has the potential to speed up conventional template matching computations by a factor of several magnitude orders for the case of 3D images.
引用
收藏
页码:4937 / 4969
页数:33
相关论文
共 24 条
  • [1] [Anonymous], 2017, Digital Image Processing: Global Edition
  • [2] Banach S., 1938, STUD MATH, V7, P36, DOI [10.4064/sm-7-1-36-44, DOI 10.4064/SM-7-1-36-44]
  • [3] Toward detecting and identifying macromolecules in a cellular context:: Template matching applied to electron tomograms
    Böhm, J
    Frangakis, AS
    Hegerl, R
    Nickell, S
    Typke, D
    Baumeister, W
    [J]. PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2000, 97 (26) : 14245 - 14250
  • [4] Brunelli R., 2009, Template matching techniques in computer vision: Theory and practice, P348, DOI [DOI 10.1002/9780470744055, 10.1002/9780470744055]
  • [5] EXTREME RATIO BETWEEN SPECTRAL AND FROBENIUS NORMS OF NONNEGATIVE TENSORS*
    Cao, Shengyu
    He, Simai
    Li, Zhening
    Wang, Zhen
    [J]. SIAM JOURNAL ON MATRIX ANALYSIS AND APPLICATIONS, 2023, 44 (02) : 919 - 944
  • [6] Extensive Angular Sampling Enables the Sensitive Localization of Macromolecules in Electron Tomograms
    Chaillet, Marten L.
    van der Schot, Gijs
    Gubins, Ilja
    Roet, Sander
    Veltkamp, Remco C.
    Forster, Friedrich
    [J]. INTERNATIONAL JOURNAL OF MOLECULAR SCIENCES, 2023, 24 (17)
  • [7] SYMMETRIC TENSORS AND SYMMETRIC TENSOR RANK
    Comon, Pierre
    Golub, Gene
    Lim, Lek-Heng
    Mourrain, Bernard
    [J]. SIAM JOURNAL ON MATRIX ANALYSIS AND APPLICATIONS, 2008, 30 (03) : 1254 - 1279
  • [8] A new method to solve rotated template matching using metaheuristic algorithms and the structural similarity index
    Corona, Gemma
    Maciel-Castillo, Oscar
    Morales-Castaneda, Juan
    Gonzalez, Adrian
    Cuevas, Erik
    [J]. MATHEMATICS AND COMPUTERS IN SIMULATION, 2023, 206 : 130 - 146
  • [9] ALL REAL EIGENVALUES OF SYMMETRIC TENSORS
    Cui, Chun-Feng
    Dai, Yu-Hong
    Nie, Jiawang
    [J]. SIAM JOURNAL ON MATRIX ANALYSIS AND APPLICATIONS, 2014, 35 (04) : 1582 - 1601
  • [10] Convolutional networks for supervised mining of molecular patterns within cellular context
    de Teresa-Trueba, Irene
    Goetz, Sara K. K.
    Mattausch, Alexander
    Stojanovska, Frosina
    Zimmerli, Christian E. E.
    Toro-Nahuelpan, Mauricio
    Cheng, Dorothy W. C.
    Tollervey, Fergus
    Pape, Constantin
    Beck, Martin
    Diz-Munoz, Alba
    Kreshuk, Anna
    Mahamid, Julia
    Zaugg, Judith B. B.
    [J]. NATURE METHODS, 2023, 20 (02) : 284 - +