Quasi-Isolated Network Slicing for Multi-Access Edge Computing

被引:2
|
作者
Koutsioumpa, Vasiliki I. [1 ]
Mitsiou, Nikos A. [1 ]
Tegos, Sotiris A. [1 ]
Diamantoulakis, Panagiotis D. [1 ]
Sarigiannidis, Panagiotis G. [2 ]
Karagiannidis, George K. [3 ,4 ]
机构
[1] Aristotle Univ Thessaloniki, Dept Elect & Comp Engn, Thessaloniki 54124, Greece
[2] Univ Western Macedonia, Dept Elect & Comp Engn, Kozani 50100, Greece
[3] Aristotle Univ Thessaloniki, Dept Elect & Comp Engn, Thessaloniki 54124, Greece
[4] Lebanese Amer Univ LAU, Artificial Intelligence & Cyber Syst Res Ctr, Beirut 03797751, Lebanon
关键词
Decoding; Task analysis; Quality of service; Uplink; Servers; Protocols; Network slicing; QI network; MEC; RSMA; feMBB; umMTC; NOMA;
D O I
10.1109/LCOMM.2024.3374816
中图分类号
TN [电子技术、通信技术];
学科分类号
0809 ;
摘要
Network slicing via next-generation multiple access techniques and multi-access edge computing (MEC) are considered key enablers for meeting the heterogeneous quality of service requirements of the sixth-generation (6G) networks. Thus, in this work, we investigate the coexistence of further enhanced mobile broadband (feMBB) and ultra-massive machine-type communications (umMTC) devices in a quasi-isolated (QI) heterogeneous uplink MEC network, where users of both services share the same resources, interfering with each other. The feMBB users can partially offload their data to the MEC server utilizing the rate-splitting multiple access (RSMA) protocol, while the umMTC users perform only full offloading. We formulate and optimally solve the problem of maximizing the number of umMTC devices subject to data processing time and data rate constraints by adjusting both the decoding order of the users and the power splitting factor of the RSMA, while a closed-form expression for the optimal partial offloading factor of the feMBBs devices is derived. Simulation results verify that utilizing the RSMA protocol, the QI MEC network has the potential to support more umMTC devices compared to the isolated one.
引用
收藏
页码:1236 / 1240
页数:5
相关论文
共 50 条
  • [21] Survey on Multi-Access Edge Computing Security and Privacy
    Ranaweera, Pasika
    Jurcut, Anca Delia
    Liyanage, Madhusanka
    IEEE COMMUNICATIONS SURVEYS AND TUTORIALS, 2021, 23 (02): : 1078 - 1124
  • [22] Collaborative Computation Offloading for Multi-access Edge Computing
    Yu, Shuai
    Langar, Rami
    2019 IFIP/IEEE SYMPOSIUM ON INTEGRATED NETWORK AND SERVICE MANAGEMENT (IM), 2019, : 689 - 694
  • [23] Digital twins and multi-access edge computing for IIoT
    Andreas P.PLAGERAS
    Konstantinos E.PSANNIS
    虚拟现实与智能硬件(中英文), 2022, 4 (06) : 521 - 534
  • [24] Dynamic UAV Routing for Multi-Access Edge Computing
    Elghitani, Fadi
    IEEE TRANSACTIONS ON VEHICULAR TECHNOLOGY, 2024, 73 (06) : 8878 - 8888
  • [25] A Survey on Task Offloading in Multi-access Edge Computing
    Islam, Akhirul
    Debnath, Arindam
    Ghose, Manojit
    Chakraborty, Suchetana
    JOURNAL OF SYSTEMS ARCHITECTURE, 2021, 118
  • [26] CDN Convergence Based on Multi-access Edge Computing
    Wu, Zhouyun
    Zhang, Jianmin
    Xie, Weiliang
    Yang, Fengyi
    2018 10TH INTERNATIONAL CONFERENCE ON WIRELESS COMMUNICATIONS AND SIGNAL PROCESSING (WCSP), 2018,
  • [27] UNMANNED AERIAL VEHICLES AND MULTI-ACCESS EDGE COMPUTING
    Qian, Yi
    IEEE WIRELESS COMMUNICATIONS, 2021, 28 (05) : 2 - 3
  • [28] The Advantage of Computation Offloading in Multi-Access Edge Computing
    Singh, Raghubir
    Armour, Simon
    Khan, Aftab
    Sooriyabandara, Mahesh
    Oikonomou, George
    2019 FOURTH INTERNATIONAL CONFERENCE ON FOG AND MOBILE EDGE COMPUTING (FMEC), 2019, : 289 - 294
  • [29] Digital Twins and Multi-Access Edge Computing for IIoT
    Plageras, Andreas P.
    Psannis, Konstantinos E.
    Virtual Reality and Intelligent Hardware, 2022, 4 (06): : 521 - 534
  • [30] A Survey of Multi-Access Edge Computing and Vehicular Networking
    Hou, Ling
    Gregory, Mark A.
    Li, Shuo
    IEEE ACCESS, 2022, 10 : 123436 - 123451