An Attention Guided Multi-scale Network with Channel-Enhanced Transformer for Coronary Arteries Segmentation

被引:0
作者
Yang, Jinzhong [1 ,2 ]
Hong, Peng [2 ]
Xu, Bu [1 ]
Chen, Yaojun [1 ]
Xu, Lisheng [1 ,2 ,3 ]
Peng, Chengbao [2 ]
Sun, Yu [4 ]
Yang, Benqiang [4 ]
机构
[1] Northeastern Univ, Coll Med & Biol Informat Engn, Shenyang 110169, Peoples R China
[2] Neusoft Res Intelligent Healthcare Technol Co Ltd, Shenyang 110169, Peoples R China
[3] Minist Educ, Key Lab Med Image Comp, Shenyang 110169, Peoples R China
[4] Gen Hosp North Theater Command, Dept Radiol, Shenyang 110169, Peoples R China
来源
12TH ASIAN-PACIFIC CONFERENCE ON MEDICAL AND BIOLOGICAL ENGINEERING, VOL 1, APCMBE 2023 | 2024年 / 103卷
基金
中国国家自然科学基金;
关键词
Coronary arteries segmentation; Attention guided; Multi-scale fusion; Channel-transformer;
D O I
10.1007/978-3-031-51455-5_19
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Coronary artery disease is a major cause of mortality and morbidity. Automatic segmentation of the coronary artery is a key step in the diagnosis of coronary artery disease. This study aims to propose an attention guided multi-scale fusion network with channel-enhanced Transformer for automatic segmentation of coronary arteries on coronary computed tomography angiography (CCTA). To improve the segmentation performance, an attention guided multi-scale fusion (AGMF) module and channel-enhanced transformer (C-Trans) module are proposed. The AGMF can effectively extract and fuse multi-layer features to locate and segment multiple small coronary arteries accurately. Specifically, the AGMF module not only can extract representative coronary artery features in the encoding process but also can accurately locate and segment coronary arteries in the decoding process. To select the effective channel features, the C-Trans is introduced to obtain the channel features with token. This module can effectively screen out the channel features in each layer of U-net to improve the accuracy of segmentation. Experimental results showthat our proposed method obtains the IoU of 0.6996 and the Dice of 0.8224, which are more than 1% higher than the existing model. From the results, it is found that our proposed network outperforms the state-of-the-art 2D coronary artery segmentation method.
引用
收藏
页码:157 / 167
页数:11
相关论文
共 20 条
[1]   A Computationally Efficient Approach to Segmentation of the Aorta and Coronary Arteries Using Deep Learning [J].
Cheung, Wing Keung ;
Bell, Robert ;
Nair, Arjun ;
Menezes, Leon J. ;
Patel, Riyaz ;
Wan, Simon ;
Chou, Kacy ;
Chen, Jiahang ;
Torii, Ryo ;
Davies, Rhodri H. ;
Moon, James C. ;
Alexander, Daniel C. ;
Jacob, Joseph .
IEEE ACCESS, 2021, 9 :108873-108888
[2]  
Dong CX, 2021, J AM COLL CARDIOL, V77, P3224
[3]  
Fu Y., 2020, SPIE, P1047
[4]   Segmentation of coronary arteries images using global feature embedded network with active contour loss [J].
Gu, Jia ;
Fang, Zhijun ;
Gao, Yongbin ;
Tian, Fangzheng .
COMPUTERIZED MEDICAL IMAGING AND GRAPHICS, 2020, 86
[5]   Fusing 2D and 3D convolutional neural networks for the segmentation of aorta and coronary arteries from CT images [J].
Gu, Linyan ;
Cai, Xiao-Chuan .
ARTIFICIAL INTELLIGENCE IN MEDICINE, 2021, 121 (121)
[6]   A Survey on Vision Transformer [J].
Han, Kai ;
Wang, Yunhe ;
Chen, Hanting ;
Chen, Xinghao ;
Guo, Jianyuan ;
Liu, Zhenhua ;
Tang, Yehui ;
Xiao, An ;
Xu, Chunjing ;
Xu, Yixing ;
Yang, Zhaohui ;
Zhang, Yiman ;
Tao, Dacheng .
IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, 2023, 45 (01) :87-110
[7]  
Huang WM, 2018, IEEE ENG MED BIO, P608, DOI 10.1109/EMBC.2018.8512328
[8]   2019 ESC Guidelines for the diagnosis and management of chronic coronary syndromes The Task Force for the diagnosis and management of chronic coronary syndromes of the European Society of Cardiology (ESC) [J].
Knuuti, Juhani ;
Wijns, William ;
Saraste, Antti ;
Capodanno, Davide ;
Barbato, Emanuele ;
Funck-Brentano, Christian ;
Prescott, Eva ;
Storey, Robert F. ;
Deaton, Christi ;
Cuisset, Thomas ;
Agewall, Stefan ;
Dickstein, Kenneth ;
Edvardsen, Thor ;
Escaned, Javier ;
Gersh, Bernard J. ;
Svitil, Pavel ;
Gilard, Martine ;
Hasdai, David ;
Hatala, Robert ;
Mahfoud, Felix ;
Masip, Josep ;
Muneretto, Claudio ;
Valgimigli, Marco ;
Achenbach, Stephan ;
Bax, Jeroen J. ;
Neumann, Franz-Josef ;
Sechtem, Udo ;
Banning, Adrian Paul ;
Bonaros, Nikolaos ;
Bueno, Hector ;
Bugiardini, Raffaele ;
Chieffo, Alaide ;
Crea, Filippo ;
Czerny, Martin ;
Delgado, Victoria ;
Dendale, Paul .
EUROPEAN HEART JOURNAL, 2020, 41 (03) :407-477
[9]   Automated Coronary Artery Segmentation in Coronary Computed Tomography Angiography (CCTA) using Deep Learning Neural Networks [J].
Lei, Yang ;
Guo, Bangjun ;
Fu, Yabo ;
Wang, Tonghe ;
Liu, Tian ;
Curran, Walter ;
Zhang, Longjiang ;
Yang, Xiaofeng .
MEDICAL IMAGING 2020: IMAGING INFORMATICS FOR HEALTHCARE, RESEARCH, AND APPLICATIONS, 2020, 11318
[10]  
Li SZ, 2019, IEEE INT C BIOINFORM, P818, DOI [10.1109/BIBM47256.2019.8983292, 10.1109/bibm47256.2019.8983292]