Overexpression of GhGSTF9 Enhances Salt Stress Tolerance in Transgenic Arabidopsis

被引:0
|
作者
Li, Huimin [1 ]
Liu, Yihui [2 ]
Wu, Jie [3 ]
Chang, Kexin [2 ]
Zhang, Guangqiang [4 ]
Zhao, Hang [2 ]
Qiu, Nianwei [2 ]
Bao, Ying [2 ]
机构
[1] Suzhou Polytech Inst Agr, Suzhou 215008, Peoples R China
[2] Qufu Normal Univ, Coll Life Sci, Qufu 273165, Peoples R China
[3] Cash Crop Res Inst Jiangxi Prov, Jiujiang 332105, Jiangxi, Peoples R China
[4] Heze Univ, Coll Agr & Bioengn, Heze 274015, Peoples R China
基金
中国国家自然科学基金;
关键词
cotton; salt stress; glutathione S-transferase; GhGSTF9; GLUTATHIONE S-TRANSFERASES; HEAVY-METAL;
D O I
10.3390/genes15060695
中图分类号
Q3 [遗传学];
学科分类号
071007 ; 090102 ;
摘要
Soil salinization is a major abiotic stress factor that negatively impacts plant growth, development, and crop yield, severely limiting agricultural production and economic development. Cotton, a key cash crop, is commonly cultivated as a pioneer crop in regions with saline-alkali soil due to its relatively strong tolerance to salt. This characteristic renders it a valuable subject for investigating the molecular mechanisms underlying plant salt tolerance and for identifying genes that confer salt tolerance. In this study, focus was placed on examining a salt-tolerant variety, E991, and a salt-sensitive variety, ZM24. A combined analysis of transcriptomic data from these cotton varieties led to the identification of potential salt stress-responsive genes within the glutathione S-transferase (GST) family. These versatile enzyme proteins, prevalent in animals, plants, and microorganisms, were demonstrated to be involved in various abiotic stress responses. Our findings indicate that suppressing GhGSTF9 in cotton led to a notably salt-sensitive phenotype, whereas heterologous overexpression in Arabidopsis plants decreases the accumulation of reactive oxygen species under salt stress, thereby enhancing salt stress tolerance. This suggests that GhGSTF9 serves as a positive regulator in cotton's response to salt stress. These results offer new target genes for developing salt-tolerant cotton varieties.
引用
收藏
页数:11
相关论文
共 50 条
  • [21] Overexpression of NaKR3 enhances salt tolerance in Arabidopsis
    Luo, Q.
    Zhao, Z.
    Li, D. K.
    Zhang, Y.
    Xie, L. F.
    Peng, M. F.
    Yuan, S.
    Yang, Y.
    GENETICS AND MOLECULAR RESEARCH, 2016, 15 (01):
  • [22] Overexpression of β-carotene hydroxylase enhances stress tolerance in Arabidopsis
    P. A. Davison
    C. N. Hunter
    P. Horton
    Nature, 2002, 418 : 203 - 206
  • [23] Overexpression of KvCHX Enhances Salt Tolerance in Arabidopsis thaliana Seedlings
    Guo, Yuqi
    Zhu, Chengrong
    Tian, Zengyuan
    CURRENT ISSUES IN MOLECULAR BIOLOGY, 2023, 45 (12) : 9692 - 9708
  • [24] Overexpression of quinone reductase from Salix matsudana Koidz enhances salt tolerance in transgenic Arabidopsis thaliana
    Song, Xixi
    Fang, Jie
    Han, Xiaojiao
    He, Xuelian
    Liu, Mingying
    Hu, Jianjun
    Zhuo, Renying
    GENE, 2016, 576 (01) : 520 - 527
  • [25] The Overexpression of Cyanidioschyzon merolae S-adenosylmethionine Synthetase Enhances Salt Tolerance in Transgenic Arabidopsis thaliana
    Sakajiri, Takayuki
    Asano, Keita
    Hirooka, Shunsuke
    Ohnuma, Mio
    Misumi, Osami
    Yoshida, Masaki
    Fujiwara, Takayuki
    Doi, Satoshi
    Kuroiwa, Haruko
    Kuroiwa, Tsuneyoshi
    CYTOLOGIA, 2010, 75 (04) : 341 - 352
  • [26] Overexpression of Fagopyrum tataricum FtbHLH2 enhances tolerance to cold stress in transgenic Arabidopsis
    Yao, Panfeng
    Sun, Zhaoxia
    Li, Chenglei
    Zhao, Xuerong
    Li, Maofei
    Deng, Renyu
    Huang, Yunji
    Zhao, Haixia
    Chen, Hui
    Wu, Qi
    PLANT PHYSIOLOGY AND BIOCHEMISTRY, 2018, 125 : 85 - 94
  • [27] Overexpression of the Jojoba Aquaporin Gene, ScPIP1, Enhances Drought and Salt Tolerance in Transgenic Arabidopsis
    Wang, Xing
    Gao, Fei
    Bing, Jie
    Sun, Weimin
    Feng, Xiuxiu
    Ma, Xiaofeng
    Zhou, Yijun
    Zhang, Genfa
    INTERNATIONAL JOURNAL OF MOLECULAR SCIENCES, 2019, 20 (01):
  • [28] Overexpression of the Arabidopsis AtEm6 gene enhances salt tolerance in transgenic rice cell lines
    Tang, Wei
    Page, Michael
    PLANT CELL TISSUE AND ORGAN CULTURE, 2013, 114 (03) : 339 - 350
  • [29] Overexpression of the Arabidopsis AtEm6 gene enhances salt tolerance in transgenic rice cell lines
    Wei Tang
    Michael Page
    Plant Cell, Tissue and Organ Culture (PCTOC), 2013, 114 : 339 - 350
  • [30] Overexpression of HcSCL13, a Halostachys caspica GRAS transcription factor, enhances plant growth and salt stress tolerance in transgenic Arabidopsis
    Zhang, Sheng
    Li, Xuewen
    Fan, Shoude
    Zhou, Lianjie
    Wang, Yan
    PLANT PHYSIOLOGY AND BIOCHEMISTRY, 2020, 151 : 243 - 254