On fuzzy fractional differential inclusion driven by variational-hemivariational inequality in Banach spaces

被引:1
作者
Liang, Yunshui [1 ,2 ]
Ceng, Lu-Chuan [2 ]
Yao, Jen-Chih [3 ]
Wu, Wei [4 ]
机构
[1] Yichun Vocat Tech Coll, Normal Coll, Yichun 336000, Jiangxi, Peoples R China
[2] Shanghai Normal Univ, Dept Math, Shanghai 200234, Peoples R China
[3] China Med Univ, Ctr Gen Educ, Taichuug 406040, Taiwan
[4] Yulin Normal Univ, Yulin 537000, Guangxi, Peoples R China
来源
COMMUNICATIONS IN NONLINEAR SCIENCE AND NUMERICAL SIMULATION | 2024年 / 138卷
关键词
The fuzzy set theory; Variational-hemivariational inequality; The surjectivity theorem; Fixed point theorem; Fuzzy fractional differential inclusion; CONVECTION; EXISTENCE; MODELS; SYSTEM;
D O I
10.1016/j.cnsns.2024.108180
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
The aim of this paper is to examine an evolution problem (FFDIVHVI) involving a fuzzy fractional differential inclusion and a variational-hemivariational inequality (VHVI) in Banach spaces. First, we show a uniqueness and existence theorem for VHVI under the theory of monotone operators and the surjectivity theorem. Then, by utilizing fixed point theorem for multivalued contraction mapping and fuzzy set theory, we establish the existence result for FFDIVHVI. In addition, it is proven that the collection of all mild trajectories of FFDIVHVI exhibits compactness. Finally, we illustrate the applicability of the abstract theory by a nonlinear quasistatic thermoelastic frictional contact problem for which we provide existence results.
引用
收藏
页数:17
相关论文
共 57 条
  • [1] On the concept of solution for fractional differential equations with uncertainty
    Agarwal, Ravi P.
    Lakshmikantham, V.
    Nieto, Juan J.
    [J]. NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2010, 72 (06) : 2859 - 2862
  • [2] EXISTENCE OF SOLUTIONS TO A NEW CLASS OF COUPLED VARIATIONAL-HEMIVARIATIONAL INEQUALITIES
    Bai, Y. U. N. R. U.
    Migorski, Stanislaw
    Nguyen, Van Thien
    Peng, J. I. A. N. W. E. N.
    [J]. JOURNAL OF NONLINEAR AND VARIATIONAL ANALYSIS, 2022, 6 (05): : 499 - 516
  • [3] Existence of solutions for parabolic variational inequalities
    Balaadich, Farah
    [J]. RENDICONTI DEL CIRCOLO MATEMATICO DI PALERMO, 2024, 73 (02) : 731 - 745
  • [4] Capatina A, 2014, ADV MECH MATH, V31, P1, DOI 10.1007/978-3-319-10163-7
  • [5] An Optimal Control Problem Related to a Parabolic-Elliptic Chemo-repulsion System in 2D Domains
    Cen, Jinxia
    Huayta-Centeno, Julio
    Mallea-Zepeda, Exequiel
    Zeng, Shengda
    [J]. APPLIED MATHEMATICS AND OPTIMIZATION, 2024, 89 (03)
  • [6] Asymptotic Analysis of Double Phase Mixed Boundary Value Problems with Multivalued Convection Term
    Cen, Jinxia
    Paczka, Dariusz
    Yao, Jen-Chih
    Zeng, Shengda
    [J]. JOURNAL OF GEOMETRIC ANALYSIS, 2023, 33 (09)
  • [7] Time Periodic Solutions to the Evolutionary Oseen Model for a Generalized Newtonian Incompressible Fluid
    Cen, Jinxia
    Migorski, Stanislaw
    Vilches, Emilio
    Zeng, Shengda
    [J]. ACTA MATHEMATICA SCIENTIA, 2023, 43 (04) : 1645 - 1667
  • [8] Inverse problems for generalized quasi-variational inequalities with application to elliptic mixed boundary value systems
    Cen, Jinxia
    Khan, Akhtar A.
    Motreanu, Dumitru
    Zeng, Shengda
    [J]. INVERSE PROBLEMS, 2022, 38 (06)
  • [9] Simultaneous distributed-boundary optimal control problems driven by nonlinear complementarity systems
    Cen, Jinxia
    Haddad, Tahar
    Van Thien Nguyen
    Zeng, Shengda
    [J]. JOURNAL OF GLOBAL OPTIMIZATION, 2022, 84 (03) : 783 - 805
  • [10] ON APPROXIMATE CONTROLLABILITY FOR SYSTEMS OF FRACTIONAL EVOLUTION HEMIVARIATIONAL INEQUALITIES WITH RIEMANN-LIOUVILLE FRACTIONAL DERIVATIVES
    Ceng, L. C.
    Cho, S. Y.
    [J]. JOURNAL OF NONLINEAR AND VARIATIONAL ANALYSIS, 2022, 6 (04): : 421 - 438