Exploring Interpretable AI Methods for ECG Data Classification

被引:2
作者
Ojha, Jaya [1 ]
Haugerud, Harek [1 ,2 ]
Yazidi, Anis [1 ,2 ]
Lind, Pedro G. [1 ,2 ,3 ]
机构
[1] Oslo Metropolitan Univ, OsloMet, Dept Comp Sci, Oslo, Norway
[2] NordSTAR Nord Ctr Sustainable & Trustworthy AI Re, Oslo, Norway
[3] Simula Res Lab, Numer Anal & Sci Comp, Oslo, Norway
来源
PROCEEDINGS OF THE 5TH ACM WORKSHOP ON INTELLIGENT CROSS-DATA ANALYSIS AND RETRIEVAL, ICDAR 2024 | 2024年
关键词
Artificial Intelligence; Deep Learning; CNN; Explainable AI; SHAP; GradCAM; LIME; INTELLIGENCE;
D O I
10.1145/3643488.3660294
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
We address ECG data classification, using methods from explainable artificial intelligence (XAI). In particular, we focus on the extended performance of the ST-CNN-5 model compared to established models. The model showcases slight improvement in accuracy suggesting the potential of this new model to provide more reliable predictions compared to other models. However, lower values of the specificity and area-under-curve metrics highlight the need to thoroughly evaluate the strengths and weaknesses of the extended model compared to other models. For the interpretability analysis, we use Shapley Additive Explanations (SHAP), Gradient-weighted Class Activation Mapping (GradCAM), and Local Interpretable Model-agnostic Explanations (LIME) methods. In particular, we show that the new model exhibits improved explainability in its GradCAM explanations compared to the former model. SHAP effectively highlights crucial ECG features, better than GradCAM and LIME. The latter methods exhibit inferior performance, particularly in capturing nuanced patterns associated with certain cardiac conditions. By using distinctive methods in the interpretability analysis, we provide a systematic discussion about which ECG features are better - or worse - uncovered by each method.
引用
收藏
页码:11 / 18
页数:8
相关论文
共 37 条
  • [11] Goodfellow I, 2016, ADAPT COMPUT MACH LE, P1
  • [12] Bag of Tricks for Image Classification with Convolutional Neural Networks
    He, Tong
    Zhang, Zhi
    Zhang, Hang
    Zhang, Zhongyue
    Xie, Junyuan
    Li, Mu
    [J]. 2019 IEEE/CVF CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR 2019), 2019, : 558 - 567
  • [13] Explaining deep neural networks for knowledge discovery in electrocardiogram analysis
    Hicks, Steven A.
    Isaksen, Jonas L.
    Thambawita, Vajira
    Ghouse, Jonas
    Ahlberg, Gustav
    Linneberg, Allan
    Grarup, Niels
    Strumke, Inga
    Ellervik, Christina
    Olesen, Morten Salling
    Hansen, Torben
    Graff, Claus
    Holstein-Rathlou, Niels-Henrik
    Halvorsen, Pal
    Maleckar, Mary M.
    Riegler, Michael A.
    Kanters, Jorgen K.
    [J]. SCIENTIFIC REPORTS, 2021, 11 (01)
  • [14] Hochreiter S, 1997, NEURAL COMPUT, V9, P1735, DOI [10.1162/neco.1997.9.1.1, 10.1007/978-3-642-24797-2]
  • [15] Fastai: A Layered API for Deep Learning
    Howard, Jeremy
    Gugger, Sylvain
    [J]. INFORMATION, 2020, 11 (02)
  • [16] Breathing Aid Devices to Support Novel Coronavirus (COVID-19)Infected Patients
    Islam M.M.
    Ullah S.M.A.
    Mahmud S.
    Raju S.M.T.U.
    [J]. SN Computer Science, 2020, 1 (5)
  • [17] Kashou A, 2020, J AM COLL CARDIOL, V75, P3504, DOI 10.1016/j.cvdhj.2020.08.005
  • [18] ECG-Based Deep Learning and Clinical Risk Factors to Predict Atrial Fibrillation
    Khurshid, Shaan
    Friedman, Samuel
    Reeder, Christopher
    Di Achille, Paolo
    Diamant, Nathaniel
    Singh, Pulkit
    Harrington, Lia X.
    Wang, Xin
    Al-Alusi, Mostafa A.
    Sarma, Gopal
    Foulkes, Andrea S.
    Ellinor, Patrick T.
    Anderson, Christopher D.
    Ho, Jennifer E.
    Philippakis, Anthony A.
    Batra, Puneet
    Lubitz, Steven A.
    [J]. CIRCULATION, 2022, 145 (02) : 122 - 133
  • [19] Artificial intelligence in disease diagnosis: a systematic literature review, synthesizing framework and future research agenda
    Kumar, Yogesh
    Koul, Apeksha
    Singla, Ruchi
    Ijaz, Muhammad Fazal
    [J]. JOURNAL OF AMBIENT INTELLIGENCE AND HUMANIZED COMPUTING, 2022, 14 (7) : 8459 - 8486
  • [20] Application of explainable artificial intelligence for healthcare: A systematic review of the last decade (2011-2022)
    Loh, Hui Wen
    Ooi, Chui Ping
    Seoni, Silvia
    Barua, Prabal Datta
    Molinari, Filippo
    Acharya, U. Rajendra
    [J]. COMPUTER METHODS AND PROGRAMS IN BIOMEDICINE, 2022, 226