Swarm Optimization-Based Federated Learning for the Cyber Resilience of Internet of Things Systems Against Adversarial Attacks

被引:1
|
作者
Yamany, Waleed [1 ]
Keshk, Marwa [1 ]
Moustafa, Nour [1 ]
Turnbull, Benjamin [1 ]
机构
[1] Univ New South Wales, Canberra, ACT 2612, Australia
关键词
Internet of Things; Servers; Data models; Industries; Training; Federated learning; Resilience; Cyber resilience; federated learning; Internet of Things (IoT); industry; 5; swarm optimisation; adversarial attacks; GREY WOLF OPTIMIZER; FRAMEWORK; SECURITY; PRIVACY;
D O I
10.1109/TCE.2023.3319039
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
Federated Learning (FL) is a paradigm of distributed machine learning that enables multiple devices or clients to work together in training a common model while keeping the privacy of individual data. However, FL has several issues such as slow convergence, communication overhead, and vulnerability to adversarial attacks, particularly in Industry 5 environments such as the Internet of Things (IoT) and its integration with traditional manufacturing processes. These challenges stem from the diverse and non-IID nature of data distributed across clients, which leads to slow convergence and increased communication rounds. This paper aims to address these challenges by proposing a grey wolf optimisation-based federated learning (GWOFL) approach for offering resilience in Industry 5.0 settings against adversarial attacks. The proposed approach decreases the number of communication rounds, reduces the payload between clients and the server, and withstands adversarial attacks simultaneously. It also reduces communication overhead and successfully defends against data poisoning attacks. Experimental results have revealed the efficiency of the proposed approach in overcoming the challenges of FL using the MNIST and CIFAR-10 datasets. The proposed approach converges faster, along with higher accuracy compared with the peer FL methods.
引用
收藏
页码:1359 / 1369
页数:11
相关论文
共 50 条
  • [31] Optimization-Based Quantized Federated Learning for General Edge Computing Systems
    Li, Yangchen
    Cui, Ying
    Lau, Vincent
    ICC 2023-IEEE INTERNATIONAL CONFERENCE ON COMMUNICATIONS, 2023, : 5934 - 5939
  • [32] Semisupervised Federated-Learning-Based Intrusion Detection Method for Internet of Things
    Zhao, Ruijie
    Wang, Yijun
    Xue, Zhi
    Ohtsuki, Tomoaki
    Adebisi, Bamidele
    Gui, Guan
    IEEE INTERNET OF THINGS JOURNAL, 2023, 10 (10) : 8645 - 8657
  • [33] Collaborative Anomaly Detection for Internet of Things based on Federated Learning
    Kim, Seongwoo
    Cai, He
    Hua, Cunqing
    Gu, Pengwenlong
    Xu, Wenchao
    Park, Jeonghyeok
    2020 IEEE/CIC INTERNATIONAL CONFERENCE ON COMMUNICATIONS IN CHINA (ICCC), 2020, : 623 - 628
  • [34] Optimization-Based GenQSGD for Federated Edge Learning
    Li, Yangchen
    Cui, Ying
    Lau, Vincent
    2021 IEEE GLOBAL COMMUNICATIONS CONFERENCE (GLOBECOM), 2021,
  • [35] Novel Evasion Attacks Against Adversarial Training Defense for Smart Grid Federated Learning
    Bondok, Atef H.
    Mahmoud, Mohamed
    Badr, Mahmoud M.
    Fouda, Mostafa M.
    Abdallah, Mohamed
    Alsabaan, Maazen
    IEEE ACCESS, 2023, 11 : 112953 - 112972
  • [36] Computation and Communication Efficient Adaptive Federated Optimization of Federated Learning for Internet of Things
    Chen, Zunming
    Cui, Hongyan
    Wu, Ensen
    Yu, Xi
    ELECTRONICS, 2023, 12 (16)
  • [37] Research and Application of Generative-Adversarial-Network Attacks Defense Method Based on Federated Learning
    Ma, Xiaoyu
    Gu, Lize
    ELECTRONICS, 2023, 12 (04)
  • [38] SecBFL-IoV: A Secure Blockchain-Enabled Federated Learning Framework for Resilience Against Poisoning Attacks in Internet of Vehicles
    Ulllah, Irshad
    Deng, Xiaoheng
    Pei, Xinjun
    Mushtaq, Husnain
    PATTERN RECOGNITION AND COMPUTER VISION, PRCV 2024, PT 1, 2025, 15031 : 410 - 428
  • [39] Privacy protection against attack scenario of federated learning using internet of things
    Yadav, Kusum
    Kareri, Elham
    Alotaibi, Shoayee Dlaim
    Viriyasitavat, Wattana
    Dhiman, Gaurav
    Kaur, Amandeep
    ENTERPRISE INFORMATION SYSTEMS, 2023, 17 (09)
  • [40] GOFL: An Accurate and Efficient Federated Learning Framework Based on Gradient Optimization in Heterogeneous IoT Systems
    Lian, Zirui
    Cao, Jing
    Zhu, Zongwei
    Zhou, Xuehai
    Liu, Weihong
    IEEE INTERNET OF THINGS JOURNAL, 2024, 11 (07) : 12459 - 12474