Two-Level Privacy-Preserving Framework: Federated Learning for Attack Detection in the Consumer Internet of Things

被引:10
|
作者
Rabieinejad, Elnaz [1 ]
Yazdinejad, Abbas [1 ]
Dehghantanha, Ali [1 ]
Srivastava, Gautam [2 ,3 ,4 ]
机构
[1] Univ Guelph, Sch Comp Sci, Cyber Sci Lab, Canada Cyber Foundry, Guelph, ON N1H 6S1, Canada
[2] Brandon Univ, Dept Math & Comp Sci, Brandon, MB R7A 6A9, Canada
[3] China Med Univ, Res Ctr Interneural Comp, Taichung 40402, Taiwan
[4] Lebanese Amer Univ, Dept Comp Sci & Math, Beirut 1102, Lebanon
基金
加拿大自然科学与工程研究理事会;
关键词
Privacy; Security; Data privacy; Cryptography; Data models; Computational modeling; Servers; FL; PHE; ConsumerIoT; privacy; attack detection;
D O I
10.1109/TCE.2024.3349490
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
As the adoption of Consumer Internet of Things (CIoT) devices surges, so do concerns about security vulnerabilities and privacy breaches. Given their integration into daily life and data collection capabilities, it is crucial to safeguard user privacy against unauthorized access and potential leaks proactively. Federated learning, an advanced machine learning, provides a promising solution by inherently prioritizing privacy, circumventing the need for centralized data collection, and bolstering security. Yet, federated learning opens up avenues for adversaries to extract critical information from the machine learning model through data leakage and model inference attacks targeted at the central server. In response to this particular concern, we present an innovative two-level privacy-preserving framework in this paper. This framework synergistically combines federated learning with partially homomorphic encryption, which we favor over other methods such as fully homomorphic encryption and differential privacy. Our preference for partially homomorphic encryption is based on its superior balance between computational efficiency and model performance. This advantage becomes particularly relevant when considering the intense computational demands of fully homomorphic encryption and the sacrifice to model accuracy often associated with differential privacy. Incorporating partially homomorphic encryption augments federated learning's privacy assurance, introducing an additional protective layer. The fundamental properties of partially homomorphic encryption enable the central server to aggregate and compute operations on the encrypted local models without decryption, thereby preserving sensitive information from potential exposures. Empirical results substantiate the efficacy of the proposed framework, which significantly ameliorates attack prediction error rates and reduces false alarms compared to conventional methods. Moreover, through security analysis, we prove our proposed framework's enhanced privacy compared to existing methods that deploy federated learning for attack detection.
引用
收藏
页码:4258 / 4265
页数:8
相关论文
共 50 条
  • [41] On perspective of security and privacy-preserving solutions in the internet of things
    Malina, Lukas
    Hajny, Jan
    Fujdiak, Radek
    Hosek, Jiri
    COMPUTER NETWORKS, 2016, 102 : 83 - 95
  • [42] FedLD: Federated Learning for Privacy-Preserving Collaborative Landslide Detection
    Tang, Xiaochuan
    Yan, Xiaochuang
    Yuan, Xiaojun
    Liu, Xin
    Lu, Zhong
    Wang, Yu
    Zhong, Hao
    Li, Dongfen
    Catani, Filippo
    IEEE GEOSCIENCE AND REMOTE SENSING LETTERS, 2024, 21
  • [43] Privacy-Preserving Aggregation for Federated Learning-Based Navigation in Vehicular Fog
    Kong, Qinglei
    Yin, Feng
    Lu, Rongxing
    Li, Beibei
    Wang, Xiaohong
    Cui, Shuguang
    Zhang, Ping
    IEEE TRANSACTIONS ON INDUSTRIAL INFORMATICS, 2021, 17 (12) : 8453 - 8463
  • [44] A Privacy Preserving Framework for the Internet of Things
    Abou-Tair, Dhiah el Diehn I.
    Buchsenstein, Simon
    Khalifeh, Ala'
    2018 19TH IEEE/ACIS INTERNATIONAL CONFERENCE ON SOFTWARE ENGINEERING, ARTIFICIAL INTELLIGENCE, NETWORKING AND PARALLEL/DISTRIBUTED COMPUTING (SNPD), 2018, : 27 - 31
  • [45] Privacy-Preserving Federated Edge Learning: Modeling and Optimization
    Liu, Tianyu
    Di, Boya
    Song, Lingyang
    IEEE COMMUNICATIONS LETTERS, 2022, 26 (07) : 1489 - 1493
  • [46] Privacy-Preserving Asynchronous Grouped Federated Learning for IoT
    Zhang, Tao
    Song, Anxiao
    Dong, Xuewen
    Shen, Yulong
    Ma, Jianfeng
    IEEE INTERNET OF THINGS JOURNAL, 2022, 9 (07): : 5511 - 5523
  • [47] A Novel Approach for Differential Privacy-Preserving Federated Learning
    Elgabli, Anis
    Mesbah, Wessam
    IEEE OPEN JOURNAL OF THE COMMUNICATIONS SOCIETY, 2025, 6 : 466 - 476
  • [48] FL2DP: Privacy-Preserving Federated Learning Via Differential Privacy for Artificial IoT
    Gu, Chen
    Cui, Xuande
    Zhu, Xiaoling
    Hu, Donghui
    IEEE TRANSACTIONS ON INDUSTRIAL INFORMATICS, 2024, 20 (04) : 5100 - 5111
  • [49] Analyzing User-Level Privacy Attack Against Federated Learning
    Song, Mengkai
    Wang, Zhibo
    Zhang, Zhifei
    Song, Yang
    Wang, Qian
    Ren, Ju
    Qi, Hairong
    IEEE JOURNAL ON SELECTED AREAS IN COMMUNICATIONS, 2020, 38 (10) : 2430 - 2444
  • [50] Federated Semisupervised Learning for Attack Detection in Industrial Internet of Things
    Aouedi, Ons
    Piamrat, Kandaraj
    Muller, Guillaume
    Singh, Kamal
    IEEE TRANSACTIONS ON INDUSTRIAL INFORMATICS, 2023, 19 (01) : 286 - 295